Glycolysis and chemoresistance in acute myeloid leukemia.

Yan Yang, Jianlin Pu, You Yang
Author Information
  1. Yan Yang: Department of Neonatology, Zigong Maternity and Child Health Care Hospital, Zigong, Sichuan, 643000, China.
  2. Jianlin Pu: Department of Psychiatry, The Zigong Affiliated Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan, 643000, China.
  3. You Yang: Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China.

Abstract

While traditional high-dose chemotherapy can effectively prolong the overall survival of acute myeloid leukemia (AML) patients and contribute to better prognostic outcomes, the advent of chemoresistance is a persistent challenge to effective AML management in the clinic. The therapeutic resistance is thought to emerge owing to the heterogeneous and adaptable nature of tumor cells when exposed to exogenous stimuli. Recent studies have focused on exploring metabolic changes that may afford novel opportunities to treat AML, with a particular focus on glycolytic metabolism. The Warburg effect, a hallmark of cancer, refers to metabolism of glucose through glycolysis under normoxic conditions, which contributes to the development of chemoresistance. Despite the key significance of this metabolic process in the context of malignant transformation, the underlying molecular mechanisms linking glycolysis to chemoresistance in AML remain incompletely understood. This review offers an overview of the current status of research focused on the relationship between glycolytic metabolism and AML resistance to chemotherapy, with a particular focus on the contributions of glucose transporters, key glycolytic enzymes, signaling pathways, non-coding RNAs, and the tumor microenvironment to this relationship. Together, this article will provide a foundation for the selection of novel therapeutic targets and the formulation of new approaches to treating AML.

Keywords

References

  1. Clin Cancer Res. 2006 Aug 15;12(16):4851-8 [PMID: 16914571]
  2. Biochem Biophys Res Commun. 2012 Jun 22;423(1):38-44 [PMID: 22627140]
  3. Curr Treat Options Oncol. 2020 Jun 29;21(8):66 [PMID: 32601974]
  4. Cancer Chemother Pharmacol. 2016 May;77(5):1061-7 [PMID: 27056384]
  5. RSC Adv. 2019 Apr 8;9(19):10897-10904 [PMID: 35515331]
  6. FEBS Lett. 2015 Jul 8;589(15):1981-7 [PMID: 25979172]
  7. Protein Sci. 2019 Oct;28(10):1771-1784 [PMID: 31342570]
  8. Oncol Lett. 2016 Jul;12(1):334-342 [PMID: 27347147]
  9. Blood. 2013 Aug 8;122(6):969-80 [PMID: 23814018]
  10. J Leukoc Biol. 2020 Oct;108(4):1081-1099 [PMID: 32573851]
  11. Mol Oncol. 2020 Mar;14(3):539-555 [PMID: 31901148]
  12. Cell Metab. 2013 Nov 5;18(5):726-39 [PMID: 24140020]
  13. Drug Des Devel Ther. 2020 May 27;14:2091-2100 [PMID: 32546972]
  14. Elife. 2019 Feb 05;8: [PMID: 30720426]
  15. Cell Signal. 2017 Jun;34:23-37 [PMID: 28235572]
  16. Cell. 1982 Nov;31(1):99-109 [PMID: 6297757]
  17. Cell Syst. 2018 Jul 25;7(1):49-62.e8 [PMID: 29960885]
  18. Blood. 2005 Mar 15;105(6):2527-34 [PMID: 15550488]
  19. J Biol Chem. 2002 Mar 1;277(9):7610-8 [PMID: 11751859]
  20. Nature. 2002 Dec 5;420(6915):563-73 [PMID: 12466851]
  21. Cancer Commun (Lond). 2022 Mar;42(3):245-265 [PMID: 35234370]
  22. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  23. Oncol Lett. 2015 Apr;9(4):1827-1832 [PMID: 25789051]
  24. Cell Death Dis. 2024 May 28;15(5):366 [PMID: 38806469]
  25. Biochem Biophys Res Commun. 2022 Sep 24;622:149-156 [PMID: 35863089]
  26. Arch Iran Med. 2018 Feb 01;21(2):73-78 [PMID: 29664658]
  27. Semin Cancer Biol. 2022 Nov;86(Pt 3):1216-1230 [PMID: 36330953]
  28. J Cell Sci. 2014 Nov 15;127(Pt 22):4857-69 [PMID: 25271056]
  29. Cancer Discov. 2020 Apr;10(4):506-525 [PMID: 32014868]
  30. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010 Feb;18(1):85-9 [PMID: 20137124]
  31. Environ Res. 2024 Mar 1;244:117783 [PMID: 38048862]
  32. Adv Exp Med Biol. 2019;1134:243-258 [PMID: 30919341]
  33. Blood. 2009 Mar 12;113(11):2526-34 [PMID: 19144990]
  34. Nat Rev Cancer. 2002 Jul;2(7):489-501 [PMID: 12094235]
  35. Mol Cancer. 2022 Jul 14;21(1):144 [PMID: 35836256]
  36. Ann Hematol. 2018 Aug;97(8):1375-1389 [PMID: 29654398]
  37. Diabetes. 2010 Jun;59(6):1397-406 [PMID: 20332342]
  38. Int J Biochem Cell Biol. 2012 Jan;44(1):11-5 [PMID: 22024155]
  39. Int J Hematol. 2022 Sep;116(3):372-380 [PMID: 35536508]
  40. World J Gastroenterol. 2016 Jan 14;22(2):823-32 [PMID: 26811628]
  41. Blood Rev. 2021 Jul;48:100786 [PMID: 33353770]
  42. Cancers (Basel). 2022 Sep 21;14(19): [PMID: 36230492]
  43. Int J Mol Sci. 2022 Dec 20;24(1): [PMID: 36613455]
  44. Histol Histopathol. 2022 Feb;37(2):137-149 [PMID: 34825699]
  45. J Exp Med. 2011 Feb 14;208(2):313-26 [PMID: 21242296]
  46. J Exp Clin Cancer Res. 2018 May 15;37(1):104 [PMID: 29764469]
  47. J Clin Oncol. 2011 Feb 10;29(5):487-94 [PMID: 21220605]
  48. J Cell Biol. 2021 Feb 1;220(2): [PMID: 33464299]
  49. Dev Biol. 2004 Sep 15;273(2):175-84 [PMID: 15328005]
  50. Biochim Biophys Acta. 1981 Jul 6;645(1):63-70 [PMID: 6266476]
  51. Cell. 2011 Mar 4;144(5):757-68 [PMID: 21376236]
  52. Nature. 2014 Jun 5;510(7503):121-5 [PMID: 24847886]
  53. Int J Mol Sci. 2018 Apr 16;19(4): [PMID: 29659554]
  54. Cell Stem Cell. 2012 Sep 7;11(3):415-28 [PMID: 22958933]
  55. Int J Nanomedicine. 2020 Oct 19;15:8019-8036 [PMID: 33116515]
  56. Biomed Pharmacother. 2019 Sep;117:109171 [PMID: 31261026]
  57. Trends Cell Biol. 2020 Sep;30(9):705-719 [PMID: 32620516]
  58. Nat Rev Mol Cell Biol. 2005 May;6(5):376-85 [PMID: 15852042]
  59. Clin Cancer Res. 2015 Jun 1;21(11):2440-4 [PMID: 25838393]
  60. Cancers (Basel). 2021 Feb 22;13(4): [PMID: 33671514]
  61. Mol Biol Rep. 2015 Apr;42(4):841-51 [PMID: 25689954]
  62. Front Oncol. 2018 Sep 04;8:331 [PMID: 30234009]
  63. Cell Physiol Biochem. 2018;51(2):886-896 [PMID: 30466095]
  64. Cell Death Dis. 2021 Sep 28;12(10):885 [PMID: 34584066]
  65. Mol Cancer. 2019 Jan 9;18(1):6 [PMID: 30626395]
  66. Drug Resist Updat. 2018 May;38:1-11 [PMID: 29857814]
  67. Int J Biol Sci. 2019 Mar 1;15(4):882-894 [PMID: 30906218]
  68. Front Endocrinol (Lausanne). 2018 Jul 09;9:338 [PMID: 30038596]
  69. J Evid Based Med. 2021 Sep;14(3):232-256 [PMID: 34388310]
  70. Blood. 2014 Jul 24;124(4):555-66 [PMID: 24928860]
  71. Int J Biol Macromol. 2021 Dec 15;193(Pt B):1499-1506 [PMID: 34740687]
  72. Blood Cells. 1978;4(1-2):7-25 [PMID: 747780]
  73. J Egypt Natl Canc Inst. 2022 Sep 26;34(1):40 [PMID: 36155866]
  74. J Cell Biochem. 2018 Jul;119(7):6296-6308 [PMID: 29663500]
  75. Mol Cell. 2010 Jul 30;39(2):171-83 [PMID: 20670887]
  76. Biomed Pharmacother. 2021 Oct;142:111652 [PMID: 34112534]
  77. Leuk Lymphoma. 2020 Dec;61(13):3146-3153 [PMID: 32812818]
  78. Future Med Chem. 2019 Sep;11(17):2333-2352 [PMID: 31581916]
  79. Blood. 2012 May 17;119(20):4686-97 [PMID: 22452979]
  80. Cancer Cell. 2016 Nov 14;30(5):779-791 [PMID: 27746145]
  81. J Cell Biol. 1985 Sep;101(3):942-8 [PMID: 2993317]
  82. Asia Pac J Clin Oncol. 2018 Dec;14(6):383-391 [PMID: 29575602]
  83. Onco Targets Ther. 2019 Feb 13;12:1195-1204 [PMID: 30863087]
  84. Science. 1999 Apr 2;284(5411):143-7 [PMID: 10102814]
  85. Mol Aspects Med. 2019 Dec;70:21-32 [PMID: 31623866]
  86. Oncotarget. 2015 Oct 6;6(30):29375-87 [PMID: 26320188]
  87. Cell Death Dis. 2020 Sep 24;11(9):797 [PMID: 32973135]
  88. Drug Discov Today. 2017 Nov;22(11):1637-1653 [PMID: 28843632]
  89. PLoS One. 2011;6(11):e27222 [PMID: 22073292]
  90. Oncol Rep. 2017 Feb;37(2):1059-1065 [PMID: 28000878]
  91. Br J Haematol. 2018 Oct;183(2):242-250 [PMID: 30272826]
  92. Cell. 2012 Jun 8;149(6):1192-205 [PMID: 22682243]
  93. N Engl J Med. 2015 Sep 17;373(12):1136-52 [PMID: 26376137]
  94. Leuk Lymphoma. 2010 Sep;51(9):1711-9 [PMID: 20795789]
  95. Cells. 2019 Jul 31;8(8): [PMID: 31370337]
  96. Molecules. 2022 Jun 18;27(12): [PMID: 35745032]
  97. Cancer Sci. 2019 Feb;110(2):751-760 [PMID: 30548479]
  98. Oncol Rep. 2019 Nov;42(5):2149-2158 [PMID: 31545464]
  99. Nat Med. 2015 Nov;21(11):1253-61 [PMID: 26540387]
  100. Nat Cancer. 2020 Dec;1(12):1176-1187 [PMID: 33884374]
  101. Cancer Lett. 2021 Apr 10;503:240-248 [PMID: 33246091]
  102. Int J Biol Sci. 2022 May 16;18(9):3668-3675 [PMID: 35813468]
  103. Nat Rev Cancer. 2010 Apr;10(4):267-77 [PMID: 20300106]
  104. Curr Opin Oncol. 2012 Nov;24(6):650-4 [PMID: 22913968]
  105. Onco Targets Ther. 2019 Mar 11;12:1937-1945 [PMID: 30881045]
  106. Int J Mol Sci. 2022 Sep 02;23(17): [PMID: 36077431]
  107. Biosens Bioelectron. 2019 Jun 15;135:82-87 [PMID: 31004924]
  108. DNA Cell Biol. 2017 Jan;36(1):18-25 [PMID: 27854515]
  109. Am J Physiol Cell Physiol. 2014 Jun 15;306(12):C1119-28 [PMID: 24760979]
  110. Mol Cancer. 2010 Feb 09;9:33 [PMID: 20144215]
  111. J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94 [PMID: 19812304]
  112. Expert Rev Hematol. 2022 Dec;15(12):1073-1083 [PMID: 35980117]
  113. Haematologica. 2021 Apr 01;106(4):1163-1166 [PMID: 32554563]
  114. Biosci Rep. 2021 Jun 25;41(6): [PMID: 33969374]
  115. Hematol Oncol. 2021 Apr;39(2):231-242 [PMID: 33332639]
  116. J Cell Physiol. 2019 Jul;234(7):10602-10614 [PMID: 30417360]
  117. Leukemia. 2016 Aug;30(8):1788-92 [PMID: 26952837]
  118. Exp Hematol Oncol. 2021 Mar 31;10(1):24 [PMID: 33789743]
  119. Front Oncol. 2021 Sep 03;11:698023 [PMID: 34540667]
  120. Cell Stem Cell. 2012 Sep 7;11(3):429-39 [PMID: 22958934]
  121. Acta Pharm Sin B. 2022 Feb;12(2):558-580 [PMID: 35256934]
  122. Arch Biochem Biophys. 2020 Feb 15;680:108244 [PMID: 31904363]
  123. Nat Rev Cancer. 2020 Jul;20(7):365-382 [PMID: 32415283]
  124. Appl Biochem Biotechnol. 2023 Aug;195(8):5217-5237 [PMID: 37129745]
  125. Front Genet. 2021 Jun 17;12:680928 [PMID: 34220956]
  126. Pflugers Arch. 2020 Sep;472(9):1155-1175 [PMID: 32591905]
  127. Pathogens. 2021 Jun 22;10(7): [PMID: 34206267]
  128. Mol Cell. 2018 Aug 2;71(3):428-442 [PMID: 30057200]
  129. Nat Rev Clin Oncol. 2022 Dec;19(12):749-762 [PMID: 36207413]
  130. Mol Cancer Res. 2013 Nov;11(11):1326-36 [PMID: 24008673]
  131. Curr Opin Oncol. 2001 Nov;13(6):463-9 [PMID: 11673686]
  132. Cells. 2021 Oct 21;10(11): [PMID: 34831055]
  133. Front Immunol. 2021 Nov 24;12:779787 [PMID: 34899740]
  134. Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62 [PMID: 24556838]
  135. J Cell Physiol. 2019 Jun;234(6):8465-8486 [PMID: 30515779]
  136. J Biol Chem. 2015 Jun 12;290(24):15018-29 [PMID: 25873394]
  137. Genes Dev. 2009 Jul 1;23(13):1494-504 [PMID: 19571179]
  138. Eur J Cancer. 2023 Mar;181:166-178 [PMID: 36657325]
  139. Korean J Physiol Pharmacol. 2022 May 1;26(3):145-155 [PMID: 35477542]
  140. RSC Adv. 2019 Sep 6;9(48):28126-28134 [PMID: 35530496]
  141. Biofactors. 2020 Sep;46(5):698-715 [PMID: 32797698]
  142. Oncotarget. 2015 Oct 13;6(31):31613-27 [PMID: 26436590]
  143. Leukemia. 2020 Nov;34(11):2981-2991 [PMID: 32409689]
  144. Front Oncol. 2020 Mar 02;10:159 [PMID: 32195169]
  145. Blood. 2017 Aug 10;130(6):789-802 [PMID: 28619982]
  146. Annu Rev Biochem. 2014;83:641-69 [PMID: 24905788]
  147. Eur J Cancer. 2015 Aug;51(12):1638-49 [PMID: 26025765]
  148. Cancer Res. 1983 Dec;43(12 Pt 1):5895-901 [PMID: 6640538]
  149. Curr Biol. 2005 Mar 29;15(6):501-12 [PMID: 15797018]
  150. J Cell Physiol. 2020 Dec;235(12):9021-9036 [PMID: 32372501]
  151. Int J Radiat Biol. 2019 Jul;95(7):912-919 [PMID: 30822194]
  152. J Int Med Res. 2020 Aug;48(8):300060520950135 [PMID: 32840158]
  153. Leukemia. 2017 Nov;31(11):2326-2335 [PMID: 28280275]
  154. Cancer Chemother Pharmacol. 2007 Mar;59(4):495-505 [PMID: 16906425]
  155. Biosci Rep. 2020 Jun 26;40(6): [PMID: 32426817]
  156. Signal Transduct Target Ther. 2020 Sep 2;5(1):177 [PMID: 32873793]
  157. J Cancer. 2023 Jan 1;14(1):99-113 [PMID: 36605494]

Word Cloud

Created with Highcharts 10.0.0AMLchemoresistancemyeloidleukemiaglycolyticmetabolismchemotherapyacutetherapeuticresistancetumorfocusedmetabolicnovelparticularfocusglucoseglycolysiskeyrelationshipGlycolysistraditionalhigh-dosecaneffectivelyprolongoverallsurvivalpatientscontributebetterprognosticoutcomesadventpersistentchallengeeffectivemanagementclinicthoughtemergeowingheterogeneousadaptablenaturecellsexposedexogenousstimuliRecentstudiesexploringchangesmayaffordopportunitiestreatWarburgeffecthallmarkcancerrefersnormoxicconditionscontributesdevelopmentDespitesignificanceprocesscontextmalignanttransformationunderlyingmolecularmechanismslinkingremainincompletelyunderstoodreviewoffersoverviewcurrentstatusresearchcontributionstransportersenzymessignalingpathwaysnon-codingRNAsmicroenvironmentTogetherarticlewillprovidefoundationselectiontargetsformulationnewapproachestreatingAcuteChemoresistance

Similar Articles

Cited By