Strategies for improving cathode electrolyte interphase in high-performance dual-ion batteries.

Yitao He, Zhipeng Chen, Yaohui Zhang
Author Information
  1. Yitao He: Department of New Energy Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui, China.
  2. Zhipeng Chen: Department of New Energy Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui, China.
  3. Yaohui Zhang: School of Physics, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, Heilongjiang 150001, China.

Abstract

Dual-ion batteries (DIBs) offer high energy density due to the ability to intercalate both anions and cations, thereby increasing the cutoff voltage and battery capacity. Graphite, with its ordered layered structure and cost-effectiveness, is commonly employed as the cathode material for DIBs. However, the discharge capacity of graphite cathodes is relatively low, and their cycling stability is poor, limiting the practical applications of DIBs. The formation of cathode electrolyte interphase (CEI) on the graphite cathode surface is closely related to anion behavior. Constructing a stable cathode electrolyte interface is crucial for improving the stability of anion storage. Therefore, we introduce a series of strategies to enhance the quality of the CEI layer, including additives, binders, main salts or solvents, high-concentration electrolytes, doping elements, artificial CEI, and graphite surface modifications. These strategies improve the CEI by enhancing anion transport rates, increasing anion solvation capabilities, and improving the structural stability of graphite cathodes, which is of profound significance for increasing the capacity and stability of DIBs. This review provides inspiration for future CEI research, encouraging further exploration of resources of CEI components and improvement strategies to further promote the development of DIBs technology.

Keywords

References

  1. Nat Chem. 2015 Jan;7(1):19-29 [PMID: 25515886]
  2. ACS Appl Mater Interfaces. 2019 May 22;11(20):18504-18510 [PMID: 31033271]
  3. Chem Sci. 2022 Mar 8;13(14):4058-4069 [PMID: 35441000]
  4. Nat Commun. 2020 Jul 20;11(1):3629 [PMID: 32686673]
  5. Angew Chem Int Ed Engl. 2023 Sep 25;62(39):e202307208 [PMID: 37407437]
  6. Chem Commun (Camb). 2015 Dec 14;51(96):17100-3 [PMID: 26451894]
  7. Adv Mater. 2017 May;29(17): [PMID: 28224685]
  8. Adv Mater. 2023 Jun;35(24):e2300917 [PMID: 37015009]
  9. ACS Appl Mater Interfaces. 2022 May 4;14(17):19561-19568 [PMID: 35442616]
  10. Int J Biol Macromol. 2017 Oct;103:1032-1043 [PMID: 28554795]
  11. ChemSusChem. 2023 Jul 7;16(13):e202300324 [PMID: 36922346]
  12. ACS Appl Mater Interfaces. 2018 Oct 24;10(42):35978-35983 [PMID: 30207686]
  13. ChemSusChem. 2022 Apr 22;15(8):e202102475 [PMID: 35243804]
  14. ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28169-28178 [PMID: 32463218]
  15. ChemSusChem. 2023 Feb 20;16(4):e202201583 [PMID: 36093930]
  16. ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45755-45762 [PMID: 31729853]
  17. Nat Commun. 2021 Sep 30;12(1):5746 [PMID: 34593799]
  18. Adv Mater. 2016 Dec;28(45):9979-9985 [PMID: 27678136]
  19. ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10101-10109 [PMID: 33619956]
  20. ChemSusChem. 2023 Feb 20;16(4):e202201252 [PMID: 35861451]
  21. Angew Chem Int Ed Engl. 2024 Jan 15;63(3):e202313142 [PMID: 37917045]
  22. Adv Mater. 2019 Jan;31(4):e1804766 [PMID: 30489656]
  23. Nat Commun. 2016 Jun 29;7:12032 [PMID: 27354162]
  24. Langmuir. 2019 Mar 19;35(11):3972-3979 [PMID: 30811939]
  25. ACS Appl Mater Interfaces. 2020 Jul 22;12(29):32719-32725 [PMID: 32602692]
  26. ChemSusChem. 2023 Feb 20;16(4):e202201595 [PMID: 36504344]
  27. ACS Appl Mater Interfaces. 2021 Jan 27;13(3):3867-3880 [PMID: 33434003]
  28. Nat Chem. 2018 Jun;10(6):667-672 [PMID: 29686378]
  29. Chemphyschem. 2017 Jan 4;18(1):156-163 [PMID: 27862878]
  30. Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202307083 [PMID: 37489757]
  31. J Am Chem Soc. 2013 Jan 30;135(4):1167-76 [PMID: 23294028]
  32. ChemSusChem. 2023 Feb 20;16(4):e202201221 [PMID: 35968880]
  33. J Phys Chem Lett. 2021 Jun 10;12(22):5430-5435 [PMID: 34080863]
  34. ACS Nano. 2023 Nov 14;17(21):21730-21738 [PMID: 37903817]
  35. Adv Mater. 2010 Sep 15;22(35):E170-92 [PMID: 20730811]
  36. Adv Mater. 2022 Mar;34(9):e2108665 [PMID: 34951488]
  37. Angew Chem Int Ed Engl. 2020 Oct 5;59(41):17924-17930 [PMID: 32558980]
  38. Nat Commun. 2019 Aug 1;10(1):3447 [PMID: 31371730]
  39. Adv Sci (Weinh). 2017 Mar 31;4(8):1700032 [PMID: 28852621]
  40. Adv Mater. 2017 Apr;29(16): [PMID: 28198050]
  41. Adv Sci (Weinh). 2018 Apr 27;5(8):1701082 [PMID: 30128228]
  42. Adv Sci (Weinh). 2022 Jul;9(20):e2201116 [PMID: 35474449]
  43. ChemSusChem. 2023 Feb 20;16(4):e202201375 [PMID: 35997662]
  44. Chem Rev. 2018 Sep 26;118(18):8936-8982 [PMID: 30133259]
  45. Angew Chem Int Ed Engl. 2021 Mar 15;60(12):6326-6332 [PMID: 33354840]
  46. Natl Sci Rev. 2020 Aug 25;8(7):nwaa178 [PMID: 34691681]
  47. Adv Mater. 2024 Feb;36(7):e2309223 [PMID: 37907202]
  48. ACS Nano. 2008 Jan;2(1):156-64 [PMID: 19206559]
  49. Adv Sci (Weinh). 2023 May;10(15):e2207426 [PMID: 36950760]
  50. Adv Mater. 2023 Nov;35(47):e2306157 [PMID: 37651648]
  51. ACS Appl Mater Interfaces. 2019 Apr 3;11(13):12570-12577 [PMID: 30855934]
  52. Small. 2023 Mar;19(12):e2206360 [PMID: 36587962]
  53. Angew Chem Int Ed Engl. 2020 Apr 16;59(16):6585-6589 [PMID: 32017343]
  54. Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21769-21777 [PMID: 32812326]
  55. Nat Commun. 2022 Feb 3;13(1):663 [PMID: 35115491]

Word Cloud

Created with Highcharts 10.0.0CEIDIBscathodegraphitestabilityanionenergyincreasingcapacityelectrolyteimprovingstrategiesbatteriescathodesinterphasesurfaceDual-ionofferhighdensitydueabilityintercalateanionscationstherebycutoffvoltagebatteryGraphiteorderedlayeredstructurecost-effectivenesscommonlyemployedmaterialHoweverdischargerelativelylowcyclingpoorlimitingpracticalapplicationsformationcloselyrelatedbehaviorConstructingstableinterfacecrucialstorageThereforeintroduceseriesenhancequalitylayerincludingadditivesbindersmainsaltssolventshigh-concentrationelectrolytesdopingelementsartificialmodificationsimproveenhancingtransportratessolvationcapabilitiesstructuralprofoundsignificancereviewprovidesinspirationfutureresearchencouragingexplorationresourcescomponentsimprovementpromotedevelopmenttechnologyStrategieshigh-performancedual-ionelectrochemistryapplicationmaterials

Similar Articles

Cited By

No available data.