Hypoxia-sonic hedgehog axis as a driver of primitive hematopoiesis development and evolution in cavefish.

Corine M van der Weele, Katrina C Hospes, Katherine E Rowe, William R Jeffery
Author Information
  1. Corine M van der Weele: Department of Biology, University of Maryland, College Park, MD, 20742, USA.
  2. Katrina C Hospes: Department of Biology, University of Maryland, College Park, MD, 20742, USA.
  3. Katherine E Rowe: Department of Biology, University of Maryland, College Park, MD, 20742, USA.
  4. William R Jeffery: Department of Biology, University of Maryland, College Park, MD, 20742, USA. Electronic address: jeffery@umd.edu.

Abstract

The teleost Astyanax mexicanus consists of surface dwelling (surface fish) and cave dwelling (cavefish) forms. Cavefish have evolved in subterranean habitats characterized by reduced oxygen levels (hypoxia) and exhibit a subset of phenotypic traits controlled by increased Sonic hedgehog (Shh) signaling along the embryonic midline. The enhancement of primitive hematopoietic domains, which are formed bilaterally in the anterior and posterior lateral plate mesoderm, are responsible for the development of more larval erythrocytes in cavefish relative to surface fish. In this study, we determine the role of hypoxia and Shh signaling in the development and evolution of primitive hematopoiesis in cavefish. We show that hypoxia treatment during embryogenesis increases primitive hematopoiesis and erythrocyte development in surface fish. We also demonstrate that upregulation of Shh midline signaling by the Smoothened agonist SAG increases primitive hematopoiesis and erythrocyte development in surface fish, whereas Shh downregulation via treatment with the Smoothened inhibitor cyclopamine decreases these traits in cavefish. Together these results suggest that hematopoietic enhancement is regulated by hypoxia and Shh signaling. Lastly, we demonstrate that hypoxia enhances expression of Shh signaling along the midline of surface fish embryos. We conclude that hypoxia-mediated Shh plasticity may be a driving force for the adaptive evolution of primitive hematopoiesis and erythrocyte development in cavefish.

Keywords

References

  1. Dev Biol. 2001 Mar 1;231(1):1-12 [PMID: 11180948]
  2. Development. 1999 Sep;126(17):3735-45 [PMID: 10433904]
  3. PLoS One. 2013;8(1):e53553 [PMID: 23326453]
  4. Nat Immunol. 2001 Feb;2(2):172-80 [PMID: 11175816]
  5. Development. 2024 Jul 15;151(14): [PMID: 38940473]
  6. Int J Dev Biol. 2010;54(6-7):1127-37 [PMID: 20711990]
  7. Evodevo. 2020 Jul 11;11:14 [PMID: 32676179]
  8. Mol Cell. 2010 Oct 22;40(2):294-309 [PMID: 20965423]
  9. Evodevo. 2014 Aug 28;5:28 [PMID: 25210614]
  10. J Cell Mol Med. 2009 Aug;13(8B):2053-2060 [PMID: 18774959]
  11. Crit Rev Eukaryot Gene Expr. 2010;20(2):129-39 [PMID: 21133842]
  12. Dev Biol. 2007 Nov 15;311(2):512-23 [PMID: 17936264]
  13. Exp Cell Res. 2019 Dec 15;385(2):111671 [PMID: 31634481]
  14. J Exp Zool B Mol Dev Evol. 2020 Nov;334(7-8):423-437 [PMID: 32614138]
  15. Elife. 2022 Jan 05;11: [PMID: 34984980]
  16. Dev Cell. 2005 Mar;8(3):389-400 [PMID: 15737934]
  17. Mol Ecol. 2018 Nov;27(22):4397-4416 [PMID: 30252986]
  18. Nat Commun. 2020 Jun 2;11(1):2772 [PMID: 32487986]
  19. Sci Rep. 2017 Feb 13;7:42346 [PMID: 28205556]
  20. Oncogene. 2004 Sep 20;23(43):7233-46 [PMID: 15378083]
  21. Oncotarget. 2018 Jan 11;9(12):10525-10535 [PMID: 29535824]
  22. Mol Biosyst. 2010 Jan;6(1):44-54 [PMID: 20024066]
  23. Int J Mol Sci. 2020 Aug 05;21(16): [PMID: 32764403]
  24. Genes Dev. 2002 Nov 1;16(21):2743-8 [PMID: 12414725]
  25. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  26. Development. 2003 Dec;130(25):6187-99 [PMID: 14602685]
  27. Dev Biol. 2018 Sep 15;441(2):209-220 [PMID: 30031754]
  28. Annu Rev Cell Dev Biol. 2023 Oct 16;39:23-44 [PMID: 37437210]
  29. Development. 2007 Mar;134(5):845-55 [PMID: 17251267]
  30. Cell Stem Cell. 2009 Jun 5;4(6):559-67 [PMID: 19497284]
  31. J Exp Zool. 1983 Jun;226(3):409-17 [PMID: 6886663]
  32. Elife. 2019 Oct 31;8: [PMID: 31670659]
  33. Development. 2013 Jun;140(12):2463-7 [PMID: 23715539]
  34. Sci Rep. 2022 Mar 8;12(1):3735 [PMID: 35260642]
  35. PeerJ. 2018 Nov 7;6:e5906 [PMID: 30425894]
  36. Development. 2016 Dec 1;143(23):4521-4532 [PMID: 27899509]
  37. Blood Rev. 2013 Jan;27(1):41-53 [PMID: 23291219]
  38. Front Physiol. 2022 Jan 14;12:763933 [PMID: 35095551]
  39. Wiley Interdiscip Rev Dev Biol. 2018 May;7(3):e312 [PMID: 29436122]
  40. Science. 1969 Sep 5;165(3897):971-81 [PMID: 17791021]
  41. Mol Cell Biochem. 2008 Apr;311(1-2):179-87 [PMID: 18228117]
  42. Blood. 2008 Jan 1;111(1):132-41 [PMID: 17875807]
  43. Biochim Biophys Acta. 2010 Dec;1803(12):1359-67 [PMID: 20840857]
  44. Sci Rep. 2021 May 13;11(1):10312 [PMID: 33986376]
  45. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14071-6 [PMID: 12391318]
  46. Mol Cell Biol. 1992 Dec;12(12):5447-54 [PMID: 1448077]
  47. Nat Genet. 2006 Jan;38(1):107-11 [PMID: 16341223]
  48. Nature. 2004 Oct 14;431(7010):844-7 [PMID: 15483612]
  49. Blood. 2007 Mar 15;109(6):2389-98 [PMID: 17090656]
  50. Exp Hematol. 1999 May;27(5):777-87 [PMID: 10340392]
  51. Postgrad Med J. 2007 Mar;83(977):148-51 [PMID: 17344565]
  52. Cancer Res. 2013 Jun 1;73(11):3235-47 [PMID: 23633488]
  53. J Exp Biol. 2020 Feb 7;223(Pt Suppl 1): [PMID: 32034044]
  54. Science. 2013 Dec 13;342(6164):1372-5 [PMID: 24337296]
  55. Mol Med Rep. 2023 May;27(5): [PMID: 36999588]
  56. J Vis Exp. 2021 Feb 14;(168): [PMID: 33645574]
  57. BMC Evol Biol. 2018 Apr 18;18(1):43 [PMID: 29665771]
  58. Development. 2011 Jun;138(12):2467-76 [PMID: 21610028]
  59. Dev Biol. 2009 Jun 1;330(1):200-11 [PMID: 19285488]

Grants

  1. R01 EY024941/NEI NIH HHS

MeSH Term

Animals
Hedgehog Proteins
Hematopoiesis
Signal Transduction
Characidae
Hypoxia
Biological Evolution
Embryo, Nonmammalian
Gene Expression Regulation, Developmental
Veratrum Alkaloids
Caves
Smoothened Receptor
Erythrocytes

Chemicals

Hedgehog Proteins
Veratrum Alkaloids
cyclopamine
Smoothened Receptor

Word Cloud

Created with Highcharts 10.0.0ShhdevelopmentsurfacecavefishprimitivehematopoiesisfishhypoxiasignalinghedgehogmidlineevolutionerythrocyteAstyanaxmexicanusdwellingCavefishtraitsSonicalongenhancementhematopoietictreatmentincreasesdemonstrateSmoothenedteleostconsistscaveformsevolvedsubterraneanhabitatscharacterizedreducedoxygenlevelsexhibitsubsetphenotypiccontrolledincreasedembryonicdomainsformedbilaterallyanteriorposteriorlateralplatemesodermresponsiblelarvalerythrocytesrelativestudydetermineroleshowembryogenesisalsoupregulationagonistSAGwhereasdownregulationviainhibitorcyclopaminedecreasesTogetherresultssuggestregulatedLastlyenhancesexpressionembryosconcludehypoxia-mediatedplasticitymaydrivingforceadaptiveHypoxia-sonicaxisdriverErythrocyteEvolutionHypoxiaPrimitive

Similar Articles

Cited By

No available data.