Optimizing Disease Outbreak Forecast Ensembles.

Spencer J Fox, Minsu Kim, Lauren Ancel Meyers, Nicholas G Reich, Evan L Ray
Author Information

Abstract

On the basis of historical influenza and COVID-19 forecasts, we found that more than 3 forecast models are needed to ensure robust ensemble accuracy. Additional models can improve ensemble performance, but with diminishing accuracy returns. This understanding will assist with the design of current and future collaborative infectious disease forecasting efforts.

Keywords

References

  1. BMC Public Health. 2019 Dec 10;19(1):1659 [PMID: 31823751]
  2. PLoS Comput Biol. 2021 Feb 12;17(2):e1008618 [PMID: 33577550]
  3. BMC Infect Dis. 2016 Jul 22;16:357 [PMID: 27449080]
  4. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3146-3154 [PMID: 30647115]
  5. Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2113561119 [PMID: 35394862]
  6. Am J Public Health. 2022 Jun;112(6):839-842 [PMID: 35420897]
  7. Sci Data. 2022 Aug 1;9(1):462 [PMID: 35915104]
  8. Int J Forecast. 2023 Jul-Sep;39(3):1366-1383 [PMID: 35791416]

Grants

  1. NU38OT000297/CDC HHS
  2. R35 GM119582/NIGMS NIH HHS
  3. U01 IP001122/NCIRD CDC HHS

MeSH Term

Humans
COVID-19
Forecasting
Disease Outbreaks
Influenza, Human
SARS-CoV-2
Models, Statistical
Epidemiological Models

Word Cloud

Created with Highcharts 10.0.0modelsensemblediseaseforecastinginfluenzaCOVID-19accuracybasishistoricalforecastsfound3forecastneededensurerobustAdditionalcanimproveperformancediminishingreturnsunderstandingwillassistdesigncurrentfuturecollaborativeinfectiouseffortsOptimizingDiseaseOutbreakForecastEnsemblesInfectiousUnitedStateshospitalizationsoutbreakviruses

Similar Articles

Cited By