Fabrication of cyborg bacterial cells as living cell-material hybrids using intracellular hydrogelation.

Ofelya Baghdasaryan, Luis E Contreras-Llano, Shahid Khan, Aijun Wang, Che-Ming Jack Hu, Cheemeng Tan
Author Information
  1. Ofelya Baghdasaryan: Biomedical Engineering, University of California Davis, Davis, CA, USA.
  2. Luis E Contreras-Llano: Biomedical Engineering, University of California Davis, Davis, CA, USA. ORCID
  3. Shahid Khan: Biomedical Engineering, University of California Davis, Davis, CA, USA.
  4. Aijun Wang: Biomedical Engineering, University of California Davis, Davis, CA, USA.
  5. Che-Ming Jack Hu: Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan. chu@ibms.sinica.edu.tw. ORCID
  6. Cheemeng Tan: Biomedical Engineering, University of California Davis, Davis, CA, USA. cmtan@ucdavis.edu. ORCID

Abstract

The production of living therapeutics, cell-based delivery of drugs and gene-editing tools and the manufacturing of bio-commodities all share a common concept: they use either a synthetic or a living cell chassis to achieve their primary engineering or therapeutic goal. Live-cell chassis face limitations inherent to their auto-replicative nature and the complexity of the cellular context. This limitation highlights the need for a new chassis combining the engineering simplicity of synthetic materials and the functionalities of natural cells. Here, we describe a protocol to assemble a synthetic polymeric network inside bacterial cells, rendering them incapable of cell division and allowing them to resist environmental stressors such as high pH, hydrogen peroxide and cell-wall-targeting antibiotics that would otherwise kill unmodified bacteria. This cellular bioengineering protocol details how bacteria can be transformed into single-lifespan devices that are resistant to environmental stressors and possess programable functionality. We designate the modified bacteria as cyborg bacterial cells. This protocol expands the synthetic biology toolset, conferring precise control over living cells and creating a versatile cell chassis for biotechnology, biomedical engineering and living therapeutics. The protocol, including the preparation of gelation reagents and chassis strain, can be completed in 4 d. The implementation of the protocol requires expertise in microbiology techniques, hydrogel chemistry, fluorescence microscopy and flow cytometry. Further functionalization of the cyborg bacterial cells and adaptation of the protocol requires skills ranging from synthetic genetic circuit engineering to hydrogel polymerization chemistries.

References

  1. Dvořák, P., Nikel, P. I., Damborský, J. & de Lorenzo, V. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 35, 845–866 (2017). [PMID: 28789939]
  2. Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785–794 (2010). [PMID: 20944664]
  3. Cubillos-Ruiz, A. et al. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 20, 941–960 (2021). [PMID: 34616030]
  4. Wurtzel, E. T. et al. Revolutionizing agriculture with synthetic biology. Nat. Plants 5, 1207–1210 (2019). [PMID: 31740769]
  5. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5, 179ps7 (2013). [PMID: 23552369]
  6. Dai, Z. et al. Versatile biomanufacturing through stimulus-responsive cell–material feedback. Nat. Chem. Biol. 15, 1017–1024 (2019). [PMID: 31527836]
  7. Tang, C. et al. On-demand biomanufacturing through synthetic biology approach. Mater. Today Bio 18, 100518 (2023). [PMID: 36636637]
  8. Raman, V. et al. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nat. Commun. 12, 6116 (2021). [PMID: 34675204]
  9. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020). [PMID: 32269218]
  10. Rampley, C. P. N. et al. Development of SimCells as a novel chassis for functional biosensors. Sci. Rep. 7, 7261 (2017). [PMID: 28775370]
  11. Kreitz, J. et al. Programmable protein delivery with a bacterial contractile injection system. Nature 616, 357–364 (2023). [PMID: 36991127]
  12. Brooks, S. M. & Alper, H. S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 12, 1390 (2021). [PMID: 33654085]
  13. Contreras-Llano, L. E. et al. Engineering cyborg bacteria through intracellular hydrogelation. Adv. Sci. 10, e2204175 (2023).
  14. Lin, J.-C. et al. Intracellular hydrogelation preserves fluid and functional cell membrane interfaces for biological interactions. Nat. Commun. 10, 1057 (2019). [PMID: 30837473]
  15. Lin, C.-L. et al. Rapid plasma membrane isolation via intracellular polymerization-mediated biomolecular confinement. Acta Biomater. 173, 325–335 (2023). [PMID: 38000526]
  16. Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B. & Sinha, R. P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 1–32 (2010).
  17. Lin, J. et al. Facile transformation of murine and human primary dendritic cells into robust and modular artificial antigen‐presenting systems by intracellular hydrogelation. Adv. Mater. 33, e2101190 (2021). [PMID: 34096117]
  18. Macdougall, L. J. et al. Intracellular crowding by bio-orthogonal hydrogel formation induces reversible molecular stasis. Adv. Mater. 34, e2202882 (2022). [PMID: 35671709]
  19. Wang, J. et al. Intracellular hydrogelation of macrophage conjugated probiotics for hitchhiking delivery and combined treatment of colitis. Mater. Today Bio 20, 100679 (2023). [PMID: 37273799]
  20. Gui, Y. et al. A smart pathogen detector engineered from intracellular hydrogelation of DNA-decorated macrophages. Nat. Commun. 14, 2927 (2023). [PMID: 37217531]
  21. Chien, C. et al. In situ hydrogelation of cellular monolayers enables conformal biomembrane functionalization for xeno‐free feeder substrate engineering. Adv. Healthc. Mater. 12, e2201708 (2023). [PMID: 36455286]
  22. Park, J. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11, 895–905 (2012). [PMID: 22797827]
  23. Underhill, G. H., Chen, A. A., Albrecht, D. R. & Bhatia, S. N. Assessment of hepatocellular function within PEG hydrogels. Biomaterials 28, 256–270 (2007). [PMID: 16979755]
  24. Gao, Y., Peng, K. & Mitragotri, S. Covalently crosslinked hydrogels via step-growth reactions: crosslinking chemistries, polymers, and clinical impact. Adv. Mater. 33, e2006362 (2021). [PMID: 33988273]
  25. Porfiri, L. et al. Irradiated non-replicative lactic acid bacteria preserve metabolic activity while exhibiting diverse immune modulation. Front. Vet. Sci. 9, 859124 (2022). [PMID: 35664846]
  26. Fan, C. et al. Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. Proc. Natl Acad. Sci. USA 117, 6752–6761 (2020). [PMID: 32144140]
  27. Nataraj, B. H., Ali, S. A., Behare, P. V. & Yadav, H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb. Cell Factories 19, 168 (2020).
  28. Brockstedt, D. G. et al. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat. Med. 11, 853–860 (2005). [PMID: 16041382]
  29. Yang, Z., Liang, G., Guo, Z., Guo, Z. & Xu, B. Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew. Chem. Int. Ed. Engl. 46, 8216–8219 (2007). [PMID: 17705321]
  30. Bacon, J. et al. Non-replicating Mycobacterium tuberculosis elicits a reduced infectivity profile with corresponding modifications to the cell wall and extracellular matrix. PLoS ONE 9, e87329 (2014). [PMID: 24516549]
  31. Baghdasaryan, O. et al. Synthetic control of living cells by intracellular polymerization. Trends Biotechnol. 42, 241–252 (2024). [PMID: 37743158]
  32. Carpenter, A., Paulsen, I. & Williams, T. Blueprints for biosensors: design, limitations, and applications. Genes 9, 375 (2018). [PMID: 30050028]
  33. Chang, H.-J., Voyvodic, P. L., Zúñiga, A. & Bonnet, J. Microbially derived biosensors for diagnosis, monitoring and epidemiology. Microb. Biotechnol. 10, 1031–1035 (2017). [PMID: 28771944]
  34. Mathur, S., Singh, D. & Ranjan, R. Genetic circuits in microbial biosensors for heavy metal detection in soil and water. Biochem. Biophys. Res. Commun. 652, 131–137 (2023). [PMID: 36842324]
  35. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019). [PMID: 30478458]
  36. Chang, H.-J. et al. Programmable receptors enable bacterial biosensors to detect pathological biomarkers in clinical samples. Nat. Commun. 12, 5216 (2021). [PMID: 34471137]
  37. Pedrolli, D. B. et al. Engineering microbial living therapeutics. In Precision Medicine for Investigators, Practitioners and Providers 71–82 (Elsevier, 2020).
  38. Claesen, J. & Fischbach, M. A. Synthetic microbes as drug delivery systems. ACS Synth. Biol. 4, 358–364 (2015). [PMID: 25079685]
  39. Farjadian, F. et al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol. Adv. 36, 968–985 (2018). [PMID: 29499341]
  40. Giesker, K. & Hensel, M. Bacterial vaccines. In Reference Module in Biomedical Sciences https://doi.org/10.1016/B978-0-12-801238-3.00141-0 (Elsevier, 2014).
  41. Khan, Y. H., Saifullah, A. & Mallhi, T. H. Bacterial Vaccines. In Encyclopedia of Infection and Immunity 530–544 (Elsevier, 2022).
  42. Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689 (2020). [PMID: 32710089]
  43. Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. USA 110, 16754–16759 (2013). [PMID: 24082144]
  44. Bohrer, C. H. & Xiao, J. Complex diffusion in bacteria. In Physical Microbiology (eds. Duménil, G. & van Teeffelen, S.) 15–43 (Springer, 2020).
  45. Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010). [PMID: 20528688]

Grants

  1. R21 CA267427/NCI NIH HHS
  2. R35 GM142788/NIGMS NIH HHS

MeSH Term

Bacteria
Escherichia coli
Hydrogels
Synthetic Biology

Chemicals

Hydrogels

Word Cloud

Created with Highcharts 10.0.0cellsprotocollivingsyntheticchassisengineeringbacterialcellbacteriacyborgtherapeuticscellularenvironmentalstressorscanrequireshydrogelproductioncell-baseddeliverydrugsgene-editingtoolsmanufacturingbio-commoditiessharecommonconcept:useeitherachieveprimarytherapeuticgoalLive-cellfacelimitationsinherentauto-replicativenaturecomplexitycontextlimitationhighlightsneednewcombiningsimplicitymaterialsfunctionalitiesnaturaldescribeassemblepolymericnetworkinsiderenderingincapabledivisionallowingresisthighpHhydrogenperoxidecell-wall-targetingantibioticsotherwisekillunmodifiedbioengineeringdetailstransformedsingle-lifespandevicesresistantpossessprogramablefunctionalitydesignatemodifiedexpandsbiologytoolsetconferringprecisecontrolcreatingversatilebiotechnologybiomedicalincludingpreparationgelationreagentsstraincompleted4dimplementationexpertisemicrobiologytechniqueschemistryfluorescencemicroscopyflowcytometryfunctionalizationadaptationskillsranginggeneticcircuitpolymerizationchemistriesFabricationcell-materialhybridsusingintracellularhydrogelation

Similar Articles

Cited By

No available data.