Evaluation of pharmacokinetic target attainment and hematological toxicity of linezolid in pediatric patients.

Manal Abouelkheir, Maram R Aldawsari, Leen Ghonem, Aliyah Almomen, Emad Alsarhani, Sarah Alsubaie, Saeed Alqahtani, Zeyad Kurdee, Abdullah Alsultan
Author Information
  1. Manal Abouelkheir: Department of Clinical Pharmacy, Faculty of Pharmacy, Misr International University, Cairo, Egypt. manal.aboelkheir@miuegypt.edu.eg.
  2. Maram R Aldawsari: Department of Pharmacy, King Saud University Medical City, Riyadh, Saudi Arabia.
  3. Leen Ghonem: Department of Pharmacy, King Saud University Medical City, Riyadh, Saudi Arabia.
  4. Aliyah Almomen: Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  5. Emad Alsarhani: Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia.
  6. Sarah Alsubaie: Pediatric Infectious Disease Unit, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
  7. Saeed Alqahtani: Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia.
  8. Zeyad Kurdee: Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
  9. Abdullah Alsultan: Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia. absultan@ksu.edu.sa.

Abstract

BACKGROUND: Linezolid is commonly used to treat severe and/or resistant Gram-positive infections. Few studies have assessed its pharmacokinetic (PK) target attainment in pediatrics.
OBJECTIVE: To evaluate the percentage of pediatrics achieving the PK targets of linezolid with standard dosing regimens and to assess the incidence and risk factors associated with its hematologic toxicity.
METHODS: This prospective observational study included pediatric patients aged 0-14 who received linezolid for suspected or proven Gram-positive infections. Linezolid trough concentrations and the 24-h area under the curve (AUC) were estimated, and hematologic toxicity was assessed.
RESULTS: Seventeen pediatric patients (5 neonates and 12 older pediatrics) were included. A wide variability was observed in linezolid's trough and AUC (ranging from 0.5 to 14.4 mg/L and from 86 to 700 mg.h/L, respectively). The median AUC was significantly higher in neonates than older pediatrics (436 [350-574] vs. 200 [134-272] mg,h/L, P���=���0.01). Out of all patients, only 41% achieved adequate drug exposure (AUC 160-300 mg.h/L and trough 2-7 mg/L), with 24% having subtherapeutic, and 35% having higher-than-optimal exposures. Hematological toxicity was observed in 53% of cases. Identified risk factors include treatment duration over 7 days, baseline platelet counts below 150��������10/L, sepsis/septic shock, and concomitant use of meropenem.
CONCLUSIONS: Linezolid's standard dosing failed to achieve its PK targets in approximately half of our pediatric cohort. Our findings highlight the complex interplay between the risk factors of linezolid-associated hematological toxicity and underscore the importance of its vigilant use and monitoring, particularly in pediatrics with concomitant multiple risk factors.

Keywords

References

  1. Vinh DC, Rubinstein E (2009) Linezolid: a review of safety and tolerability. J Infect 59(Suppl 1):S59-74 [PMID: 19766891]
  2. Dresser LD, Rybak MJ (1998) The pharmacologic and bacteriologic properties of oxazolidinones, a new class of synthetic antimicrobials. Pharmacotherapy 18(3):456���462 [PMID: 9620097]
  3. Stalker DJ, Jungbluth GL (2003) Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet 42:1129���1140 [PMID: 14531724]
  4. World Health Organization (2022) Antimicrobial resistance. Global antimicrobial resistance and use surveillance system (GLASS) report. WHO. Available from: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance . Accessed 17 Mar 2024
  5. Almutairi H, Albahadel H, Alhifany A et al (2024) Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA) at a maternity and children hospital in Saudi Arabia: A cross-sectional study. Saudi Pharm J 32(4):102001 [PMID: 38439950]
  6. Banawas SS, Alobaidi AS, Dawoud TM et al (2023) Prevalence of multidrug-resistant bacteria in healthcare-associated bloodstream infections at hospitals in Riyadh, Saudi Arabia. Pathogens 12(9):1075 [PMID: 37764883]
  7. Fang P, Gao K, Yang J et al (2023) Prevalence of multidrug-resistant pathogens causing neonatal early and late onset sepsis, a retrospective study from the tertiary referral children���s hospital. Infect Drug Resist 16:4213���4225 [PMID: 37404253]
  8. Mariani M, Parodi A, Minghetti D et al (2022) Early and late onset neonatal sepsis: epidemiology and effectiveness of empirical antibacterial therapy in a III level neonatal intensive care unit. Antibiotics (Basel) 11(2):284 [PMID: 35203886]
  9. Shariati A, Dadashi M, Moghadam MT et al (2020) Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci Rep 10(1):12689 [PMID: 32728110]
  10. Belete MA, Gedefie A, Alemayehu E et al (2023) The prevalence of vancomycin-resistant Staphylococcus aureus in Ethiopia: a systematic review and meta-analysis. Antimicrob Resist Infect Control 12(1):86 [PMID: 37649060]
  11. Band��n-Vilar E, Garc��a-Quintanilla L, Castro-Balado A et al (2022) Review of population pharmacokinetic analyses of linezolid. Clin Pharmacokinet 61(6):789���817 [PMID: 35699914]
  12. Linezolid. In: Lexicomp Online (2023) Pediatric & Neonatal Lexi-Drugs. Hudson, OH: Lexi-Comp, Inc. Available from: www.online.lexi.com . Accessed 15 Jan 2023
  13. Matrat L, Plaisant F, Barreto C et al (2020) Increasing use of linezolid in a tertiary NICU during a 10-year period: reasons and concerns for the future. Antimicrob Resist Infect Control 9(1):156 [PMID: 32967720]
  14. Buccellato E, Melis M, Biagi C et al (2015) Use of antibiotics in pediatrics: 8-year survey in Italian hospitals. PLoS ONE 10:e0139097 [PMID: 26405817]
  15. Bagga B, Buckingham S, Arnold S et al (2018) Increasing linezolid-resistant enterococcus in a children���s hospital. Pediatr Infect Dis J 37:242���244 [PMID: 29189675]
  16. Hallam MJ, Allen JM, James SE et al (2010) Potential subtherapeutic linezolid and meropenem antibiotic concentrations in a patient with severe burns and sepsis. J Burn Care Res 31:207���209 [PMID: 20061858]
  17. El-Gaml RM, El-Khodary NM, Abozahra RR et al (2022) Applying pharmacokinetic/pharmacodynamic measurements for linezolid in critically ill patients: optimizing efficacy and reducing resistance occurrence. Eur J Clin Pharmacol 78(8):1301���1310 [PMID: 35610318]
  18. Dong H, Wang X, Dong Y et al (2011) Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents 38:296���300 [PMID: 21741222]
  19. Galar A, Valerio M, Mu��oz P et al (2017) Systematic therapeutic drug monitoring for linezolid: variability and clinical impact. Antimicrob Agents Chemother 61(10):e00687-e717 [PMID: 28739788]
  20. Gandelman K, Zhu T, Fahmi OA et al (2011) Unexpected effect of rifampin on the pharmacokinetics of linezolid: in silico and in vitro approaches to explain its mechanism. J Clin Pharmacol 51:229���236 [PMID: 20371736]
  21. Bolhuis MS, van Altena R, Uges DR et al (2010) Clarithromycin significantly increases linezolid serum concentrations. Antimicrob Agents Chemother 54:5418���5419 [PMID: 20837753]
  22. Pea F, Viale P, Cojutti P et al (2012) Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother 67(8):2034���2042 [PMID: 22553142]
  23. Rao GG, Konicki R, Cattaneo D et al (2020) Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit 42(1):83���92 [PMID: 31652190]
  24. Lau C, Marriott D, Bui J et al (2023) LInezolid Monitoring to MInimise Toxicity (LIMMIT1): a multicentre retrospective review of patients receiving linezolid therapy and the impact of therapeutic drug monitoring. Int J Antimicrob Agents 61(5):106783 [PMID: 36921808]
  25. Cojutti P, Maximova N, Crichiutti G et al (2015) Pharmacokinetic/pharmacodynamic evaluation of linezolid in hospitalized paediatric patients: a step toward dose optimization by means of therapeutic drug monitoring and Monte Carlo simulation. J Antimicrob Chemother 70(1):198���206 [PMID: 25182066]
  26. Lin B, Hu Y, Xu P et al (2022) Expert consensus statement on therapeutic drug monitoring and individualization of linezolid. Front Public Health 10:967311 [PMID: 36033811]
  27. Alsultan A (2019) Determining therapeutic trough ranges for linezolid. Saudi Pharm J 27(8):1061���1063 [PMID: 31885465]
  28. FDA (2023) Linezolid prescribing information. U.S. Food and Drug Administration. Accessed 15 Jun 2023.
  29. Han X, Wang J, Zan X et al (2022) Risk factors for linezolid-induced thrombocytopenia in adult inpatients. Int J Clin Pharm 44(2):330���338 [PMID: 34731363]
  30. Kaya K��l���� E, Bulut C, S��nmezer M�� et al (2019) Risk factors for linezolid-associated thrombocytopenia and negative effect of carbapenem combination. J Infect Dev Ctries 13(10):886���891 [PMID: 32084018]
  31. Shi Y, Wu HL, Wu YH et al (2023) Safety and clinical efficacy of linezolid in children: a systematic review and meta-analysis. World J Pediatr 19(2):129���138 [PMID: 36562929]
  32. Kato H, Hagihara M, Asai N et al (2021) A systematic review and meta-analysis of myelosuppression in pediatric patients treated with linezolid for Gram-positive bacterial infections. J Infect Chemother 27(8):1143���1150 [PMID: 33727025]
  33. Ogami C, Tsuji Y, To H, Yamamoto Y (2019) Pharmacokinetics, toxicity and clinical efficacy of linezolid in Japanese pediatric patients. J Infect Chemother 25(12):979���986 [PMID: 31208925]
  34. Jones SJ, Nichols KR, DeYoung HL et al (2015) Linezolid-associated thrombocytopenia in children with renal impairment. J Pediatric Infect Dis Soc 4(3):272���275 [PMID: 26407433]
  35. Duan L, Zhou Q, Feng ZA (2022) Regression model to predict linezolid induced thrombocytopenia in neonatal sepsis patients: a ten-year retrospective cohort study. Front Pharmacol 13:710099 [PMID: 35185555]
  36. Cattaneo D, Orlando G, Cozzi V et al (2013) Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents 41(6):586���589 [PMID: 23562639]
  37. Pea F, Furlanut M, Cojutti P et al (2010) Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 54(11):4605���4610 [PMID: 20733043]
  38. Chen ML (2006) Ethnic or racial differences revisited: impact of dosage regimen and dosage form on pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 45(10):957���964 [PMID: 16984210]
  39. Tsai D, Jamal JA, Davis JS et al (2015) Interethnic differences in pharmacokinetics of antibacterials. Clin Pharmacokinet 54(3):243���260 [PMID: 25385446]
  40. Schwartz GJ, Mu��oz A, Schneider MF et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629���637 [PMID: 19158356]
  41. Tang Girdwood SC, Tang PH, Murphy ME et al (2021) Demonstrating feasibility of an opportunistic sampling approach for pharmacokinetic studies of ��-lactam antibiotics in critically ill children. J Clin Pharmacol 61(4):565���573 [PMID: 33111331]
  42. Leroux S, Turner MA, Guellec CB et al (2015) Pharmacokinetic studies in neonates: the utility of an opportunistic sampling design. Clin Pharmacokinet 54:1273���1285 [PMID: 26063050]
  43. Cios A, Ku�� K, Szymura-Oleksiak J (2013) Determination of linezolid in human serum by reversed-phase high-performance liquid chromatography with ultraviolet and diode array detection. Acta Pol Pharm 70(4):631���641 [PMID: 23923387]
  44. Thibault C, Kassir N, Goyer I et al (2019) Population pharmacokinetics of intravenous linezolid in premature infants. Pediatr Infect Dis J 38(1):82���88 [PMID: 29634620]
  45. Yang M, Zhao L, Wang X et al (2023) Population pharmacokinetics and dosage optimization of linezolid in critically ill pediatric patients. Antimicrob Agents Chemother 95(5):e02504���e025020 [PMID: 33558298]
  46. Shi Lu, Zhang Y, Duan L et al (2023) Dose optimization of linezolid in critically ill patients based on a population pharmacokinetic model: a two-center prospective interventional study. Int J Antimicrob Agents 62(2):106881 [PMID: 37301313]
  47. Mockeliunas L, Keutzer L, Sturkenboom MGG et al (2022) Model-informed precision dosing of linezolid in patients with drug-resistant tuberculosis. Pharmaceutics 14(4):753 [PMID: 35456587]
  48. Ballesteros Garc��a MDM, Or��s Mili��n ME, D��az Vel��zquez E et al (2017) Myelosupression induced by linezolid: a pediatric case. Arch Argent Pediatr 1:420���423
  49. Ichie T, Suzuki D, Yasui K et al (2015) The association between risk factors and time of onset for thrombocytopenia in Japanese patients receiving linezolid therapy: a retrospective analysis. J Clin Pharm Ther 40:279���284 [PMID: 25732525]
  50. Choi GW, Lee JY, Chang MJ et al (2019) Risk factors for linezolid-induced thrombocytopenia in patients without haemato-oncologic diseases. Basic Clin Pharmacol Toxicol 124:228���234 [PMID: 30171804]
  51. Thi Phuong Thao L, Duc Trung N, Thi My L et al (2024) Association of clinical factors with thrombocytopenia in patients receiving linezolid treatment: a retrospective study. J Infect Dev Ctries 18(2):285���290 [PMID: 38484357]
  52. Yang S, Guo W, Chen M et al (2023) Prevalence and risk factors for severe linezolid-associated thrombocytopenia in pediatric patients: an analysis of a public database. Medicine (Baltimore) 102(24):e34059 [PMID: 37327288]
  53. Chen C, Guo DH, Cao X et al (2012) Risk factors for thrombocytopenia in adult chinese patients receiving linezolid therapy. Curr Ther Res Clin Exp 73:195���206 [PMID: 24653521]
  54. Kiliaki S (2023) Piperacillin-tazobactam-induced immune thrombocytopenia: a case report. J Pharm Pract 36:451���452 [PMID: 34558345]
  55. Tajima M, Kato Y, Matsumoto J et al (2016) Linezolid-induced thrombocytopenia is caused by suppression of platelet production via phosphorylation of myosin light chain 2. Biol Pharm Bull 39:1846���1851 [PMID: 27803456]
  56. Brown NM, Goodman AL, Horner C et al (2021) Treatment of methicillin-resistant Staphylococcus aureus (MRSA): updated guidelines from the UK. JAC Antimicrob Resist 3(1):dlaa114 [PMID: 34223066]
  57. Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):e18-55 [PMID: 21208910]
  58. World Health Organization (2024) Global action plan on antimicrobial resistance. Available at: https://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ . Accessed 15 Apr 2024.

MeSH Term

Humans
Linezolid
Infant
Child, Preschool
Child
Male
Female
Adolescent
Anti-Bacterial Agents
Infant, Newborn
Prospective Studies
Area Under Curve
Gram-Positive Bacterial Infections
Risk Factors

Chemicals

Linezolid
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0toxicitypediatricsriskfactorspediatricpatientsAUCLinezolidPKlinezolidtroughh/LGram-positiveinfectionsassessedpharmacokinetictargetattainmenttargetsstandarddosinghematologicincluded5neonatesolderobservedexposureconcomitantusehematologicalBACKGROUND:commonlyusedtreatsevereand/orresistantstudiesOBJECTIVE:evaluatepercentageachievingregimensassessincidenceassociatedMETHODS:prospectiveobservationalstudyaged0-14receivedsuspectedprovenconcentrations24-hareacurveestimatedRESULTS:Seventeen12widevariabilitylinezolid'sranging0144 mg/L86700 mgrespectivelymediansignificantlyhigher436[350-574]vs200[134-272]mgP���=���00141%achievedadequatedrug160-300 mg2-7 mg/L24%subtherapeutic35%higher-than-optimalexposuresHematological53%casesIdentifiedincludetreatmentduration7 daysbaselineplateletcounts150��������10/Lsepsis/septicshockmeropenemCONCLUSIONS:Linezolid'sfailedachieveapproximatelyhalfcohortfindingshighlightcomplexinterplaylinezolid-associatedunderscoreimportancevigilantmonitoringparticularlymultipleEvaluationDrugHematologicPediatricsPharmacokinetics

Similar Articles

Cited By

No available data.