Variant calling in polyploids for population and quantitative genetics.

Alyssa R Phillips
Author Information
  1. Alyssa R Phillips: Department of Evolution and Ecology University of California, Davis Davis 95616 California USA. ORCID

Abstract

Advancements in genome assembly and sequencing technology have made whole genome sequence (WGS) data and reference genomes accessible to study polyploid species. Compared to popular reduced-representation sequencing approaches, the genome-wide coverage and greater marker density provided by WGS data can greatly improve our understanding of polyploid species and polyploid biology. However, biological features that make polyploid species interesting also pose challenges in read mapping, variant identification, and genotype estimation. Accounting for characteristics in variant calling like allelic dosage uncertainty, homology between subgenomes, and variance in chromosome inheritance mode can reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where potential solutions can be integrated into a standard variant calling pipeline.

Keywords

References

  1. Plant Genome. 2023 Dec;16(4):e20401 [PMID: 37903749]
  2. Genome Biol. 2016 Mar 23;17:53 [PMID: 27009100]
  3. New Phytol. 2020 Apr;226(2):301-305 [PMID: 31608445]
  4. Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2118879119 [PMID: 35377798]
  5. Ann Bot. 2017 Aug 1;120(2):183-194 [PMID: 28854567]
  6. BMC Genomics. 2016 Aug 24;17:672 [PMID: 27554097]
  7. Gigascience. 2018 Apr 1;7(4):1-12 [PMID: 29300887]
  8. Mol Ecol. 2021 Dec;30(23):5966-5993 [PMID: 34250668]
  9. Front Plant Sci. 2023 May 16;14:1130889 [PMID: 37260938]
  10. Nature. 2019 Oct;574(7780):679-685 [PMID: 31645766]
  11. Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2307289120 [PMID: 37788315]
  12. G3 (Bethesda). 2013 Mar;3(3):517-25 [PMID: 23450226]
  13. Methods Mol Biol. 2023;2545:297-324 [PMID: 36720820]
  14. Nat Methods. 2015 Nov;12(11):1061-3 [PMID: 26366987]
  15. BMC Genomics. 2023 Mar 16;24(1):117 [PMID: 36927511]
  16. Nat Commun. 2023 Jun 1;14(1):3180 [PMID: 37263993]
  17. Front Genet. 2020 Aug 28;11:1014 [PMID: 33005183]
  18. Bioinformatics. 2018 Feb 1;34(3):407-415 [PMID: 29028881]
  19. Nat Genet. 2018 Sep;50(9):1289-1295 [PMID: 30061735]
  20. Nat Plants. 2019 Aug;5(8):833-845 [PMID: 31383970]
  21. Front Genet. 2022 Oct 04;13:1027209 [PMID: 36267399]
  22. PLoS One. 2013 Sep 27;8(9):e75619 [PMID: 24086590]
  23. Mol Ecol Resour. 2023 Feb;23(2):499-510 [PMID: 36239149]
  24. Bioinformatics. 2014 Oct 15;30(20):2843-51 [PMID: 24974202]
  25. Nat Genet. 2020 May;52(5):525-533 [PMID: 32313247]
  26. Methods Mol Biol. 2023;2545:279-295 [PMID: 36720819]
  27. Bioinformatics. 2018 Dec 15;34(24):4165-4171 [PMID: 29931305]
  28. Mol Ecol Resour. 2022 Oct;22(7):2599-2613 [PMID: 35593534]
  29. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6809-14 [PMID: 11038553]
  30. Heredity (Edinb). 2021 Oct;127(4):357-362 [PMID: 34373594]
  31. Mol Biol Evol. 2021 Aug 23;38(9):3910-3924 [PMID: 33783509]
  32. Hortic Res. 2023 May 10;10(7):uhad097 [PMID: 37426879]
  33. Nat Genet. 2019 Mar;51(3):541-547 [PMID: 30804557]
  34. Nat Commun. 2020 Jul 29;11(1):3670 [PMID: 32728126]
  35. Heredity (Edinb). 2013 Feb;110(2):131-7 [PMID: 23211786]
  36. J Hered. 2015 May-Jun;106(3):217-27 [PMID: 25838153]
  37. Mol Ecol Resour. 2023 Nov;23(8):1812-1822 [PMID: 37578636]
  38. Biometrics. 2023 Sep;79(3):2143-2156 [PMID: 35848417]
  39. aBIOTECH. 2024 Feb 7;5(1):52-70 [PMID: 38576428]
  40. G3 (Bethesda). 2021 Jul 14;11(7): [PMID: 33993297]
  41. Nature. 2021 Feb;590(7846):438-444 [PMID: 33505029]
  42. PLoS Genet. 2018 Mar 28;14(3):e1007267 [PMID: 29590103]
  43. Methods Mol Biol. 2023;2545:325-348 [PMID: 36720821]
  44. Nat Commun. 2019 Dec 20;10(1):5818 [PMID: 31862875]
  45. Mol Ecol. 2022 Feb;31(4):1021-1027 [PMID: 34875138]
  46. Genome Res. 2022 Feb;32(2):403-408 [PMID: 34965940]
  47. Bioinformatics. 2017 Aug 15;33(16):2575-2576 [PMID: 28383704]
  48. PLoS Comput Biol. 2015 Apr 16;11(4):e1004229 [PMID: 25880203]
  49. Nat Rev Genet. 2011 Jun;12(6):443-51 [PMID: 21587300]
  50. Mol Ecol. 2017 Oct;26(20):5369-5406 [PMID: 28746784]
  51. Mol Ecol Resour. 2021 May;21(4):1230-1242 [PMID: 33559321]
  52. G3 (Bethesda). 2023 Jun 1;13(6): [PMID: 37002915]
  53. Adv Genet. 1947;1:403-29 [PMID: 20259289]
  54. New Phytol. 2010 Apr;186(1):102-12 [PMID: 20149113]
  55. Mol Ecol. 2013 Feb;22(3):532-51 [PMID: 22967111]
  56. BMC Bioinformatics. 2017 Mar 23;18(Suppl 5):119 [PMID: 28361668]
  57. Mol Ecol Resour. 2017 Mar;17(2):142-152 [PMID: 27860289]
  58. Mol Ecol Resour. 2022 Jul;22(5):1678-1692 [PMID: 34825778]
  59. Mol Ecol. 2013 Jun;22(11):2848-63 [PMID: 23121191]
  60. Genome Biol. 2014 Jun 26;15(6):R84 [PMID: 24970577]
  61. Genome Biol. 2022 Aug 23;23(1):178 [PMID: 35999561]
  62. BMC Bioinformatics. 2018 Apr 4;19(1):122 [PMID: 29618319]
  63. Genome Biol. 2021 Jan 4;22(1):3 [PMID: 33397434]
  64. Cytogenet Genome Res. 2005;109(1-3):236-49 [PMID: 15753583]
  65. Mob DNA. 2015 Dec 29;6:24 [PMID: 26719777]
  66. Mol Ecol. 2014 Jan;23(1):40-69 [PMID: 24188632]
  67. Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2214070119 [PMID: 36409908]
  68. Nat Genet. 2022 Dec;54(12):1959-1971 [PMID: 36474047]
  69. Sci Rep. 2016 Jul 05;6:29234 [PMID: 27378447]
  70. Curr Opin Biotechnol. 2023 Feb;79:102886 [PMID: 36640454]
  71. PeerJ. 2014 Jun 10;2:e431 [PMID: 24949246]
  72. Trends Ecol Evol. 2022 Mar;37(3):197-202 [PMID: 35086739]
  73. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19478-82 [PMID: 24225854]
  74. J Evol Biol. 2021 Aug;34(8):1333-1339 [PMID: 34101952]
  75. Mol Ecol Resour. 2017 Mar;17(2):194-208 [PMID: 27496322]
  76. PLoS Genet. 2019 Jul 26;15(7):e1008302 [PMID: 31348818]
  77. PLoS Genet. 2012;8(12):e1003093 [PMID: 23284289]
  78. Am Nat. 2006 Apr;167(4):E88-101 [PMID: 16670990]
  79. Nat Commun. 2020 Mar 18;11(1):1432 [PMID: 32188846]
  80. Methods Mol Biol. 2020;2061:25-36 [PMID: 31583650]
  81. Nat Rev Genet. 2013 Jan;14(1):49-61 [PMID: 23247435]
  82. Mol Ecol. 2020 Oct;29(20):3872-3888 [PMID: 32885504]
  83. G3 (Bethesda). 2022 Jan 4;12(1): [PMID: 35100403]
  84. BMC Bioinformatics. 2022 Mar 22;23(1):101 [PMID: 35317727]
  85. Heredity (Edinb). 2020 Dec;125(6):437-448 [PMID: 33077896]
  86. Plant Biotechnol J. 2021 Dec;19(12):2488-2500 [PMID: 34310022]
  87. Int J Plant Genomics. 2013;2013:890123 [PMID: 24163691]
  88. Mol Ecol Resour. 2019 May;19(3):639-647 [PMID: 30659755]
  89. Annu Rev Genet. 2000;34:401-437 [PMID: 11092833]
  90. Genome Biol. 2019 Nov 20;20(1):246 [PMID: 31747936]
  91. Mol Ecol Resour. 2021 Jul;21(5):1434-1451 [PMID: 33482035]
  92. G3 (Bethesda). 2019 Jun 5;9(6):2017-2028 [PMID: 31010824]
  93. Cold Spring Harb Symp Quant Biol. 2009;74:215-23 [PMID: 19687140]
  94. Genetics. 2018 Nov;210(3):789-807 [PMID: 30185430]
  95. Theor Appl Genet. 2022 Feb;135(2):723-739 [PMID: 34800132]
  96. Genome Res. 2008 Nov;18(11):1851-8 [PMID: 18714091]
  97. Genetics. 2023 Aug 9;224(4): [PMID: 37279657]
  98. Trends Ecol Evol. 2014 Dec;29(12):673-80 [PMID: 25454508]
  99. Nat Commun. 2022 Jun 9;13(1):3221 [PMID: 35680869]
  100. Nat Biotechnol. 2021 Jul;39(7):885-892 [PMID: 33782612]
  101. Nat Genet. 2013 Oct;45(10):1134-40 [PMID: 24071852]
  102. Ann Bot. 2011 Mar;107(3):467-590 [PMID: 21257716]
  103. BMC Genet. 2015;16 Suppl 2:S4 [PMID: 25951770]
  104. Mol Syst Biol. 2011 Aug 02;7:522 [PMID: 21811232]
  105. Nat Genet. 2019 May;51(5):877-884 [PMID: 31043755]
  106. BMC Bioinformatics. 2014 Nov 25;15:356 [PMID: 25420514]
  107. G3 (Bethesda). 2015 Mar 17;5(5):931-41 [PMID: 25787242]
  108. G3 (Bethesda). 2019 Mar 7;9(3):663-673 [PMID: 30655271]
  109. Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33 [PMID: 25431634]
  110. Chromosome Res. 2013 Mar;21(1):75-85 [PMID: 23430325]
  111. Plant Biotechnol J. 2021 Mar;19(3):615-630 [PMID: 33073445]
  112. Trends Plant Sci. 2017 Dec;22(12):1041-1055 [PMID: 29054346]
  113. Science. 1984 Nov 16;226(4676):792-801 [PMID: 15739260]
  114. Mol Ecol. 2018 Jul 10;: [PMID: 29987880]
  115. Front Plant Sci. 2018 Nov 21;9:1660 [PMID: 30519250]
  116. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9 [PMID: 19667210]
  117. Mol Ecol Resour. 2017 Jul;17(4):656-669 [PMID: 27762098]
  118. J Transl Med. 2024 Jan 28;22(1):111 [PMID: 38282030]
  119. Genome Biol. 2019 Jun 3;20(1):117 [PMID: 31159850]
  120. Nat Rev Genet. 2021 Sep;22(9):572-587 [PMID: 34050336]
  121. BMC Biol. 2023 Aug 8;21(1):168 [PMID: 37553642]
  122. Nat Commun. 2020 Nov 2;11(1):5539 [PMID: 33139747]
  123. Methods Mol Biol. 2023;2672:115-126 [PMID: 37335471]
  124. BMC Genomics. 2013 Sep 24;14:653 [PMID: 24063258]
  125. Front Plant Sci. 2021 Apr 16;12:657240 [PMID: 33936141]
  126. Genetics. 2008 Aug;179(4):2113-23 [PMID: 18689891]

Word Cloud

Created with Highcharts 10.0.0polyploidvariantcallinggenomeWGSdataspeciescangeneticssequencingwholesequencechallengesdiscusspopulationquantitativeAdvancementsassemblytechnologymadereferencegenomesaccessiblestudyComparedpopularreduced-representationapproachesgenome-widecoveragegreatermarkerdensityprovidedgreatlyimproveunderstandingbiologyHoweverbiologicalfeaturesmakeinterestingalsoposereadmappingidentificationgenotypeestimationAccountingcharacteristicslikeallelicdosageuncertaintyhomologysubgenomesvariancechromosomeinheritancemodereduceerrorspotentialsolutionsintegratedstandardpipelineVariantpolyploidsmixedploidypolyploidy

Similar Articles

Cited By