Computational strategies for cross-species knowledge transfer and translational biomedicine.

Hao Yuan, Christopher A Mancuso, Kayla Johnson, Ingo Braasch, Arjun Krishnan
Author Information
  1. Hao Yuan: Genetics and Genome Science Program; Ecology, Evolution, and Behavior Program, Michigan State University. ORCID
  2. Christopher A Mancuso: Department of Biostatistics & Informatics, University of Colorado Anschutz Medical Campus. ORCID
  3. Kayla Johnson: Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus. ORCID
  4. Ingo Braasch: Department of Integrative Biology; Genetics and Genome Science Program; Ecology, Evolution, and Behavior Program, Michigan State University. ORCID
  5. Arjun Krishnan: Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus. ORCID

Abstract

Research organisms provide invaluable insights into human biology and diseases, serving as essential tools for functional experiments, disease modeling, and drug testing. However, evolutionary divergence between humans and research organisms hinders effective knowledge transfer across species. Here, we review state-of-the-art methods for computationally transferring knowledge across species, primarily focusing on methods that utilize transcriptome data and/or molecular networks. We introduce the term "agnology" to describe the functional equivalence of molecular components regardless of evolutionary origin, as this concept is becoming pervasive in integrative data-driven models where the role of evolutionary origin can become unclear. Our review addresses four key areas of information and knowledge transfer across species: (1) transferring disease and gene annotation knowledge, (2) identifying agnologous molecular components, (3) inferring equivalent perturbed genes or gene sets, and (4) identifying agnologous cell types. We conclude with an outlook on future directions and several key challenges that remain in cross-species knowledge transfer.

References

  1. Bioinformatics. 2020 Dec 22;36(20):5076-5085 [PMID: 33026062]
  2. Nat Methods. 2022 Jan;19(1):41-50 [PMID: 34949812]
  3. Cell. 2010 Apr 16;141(2):210-7 [PMID: 20403315]
  4. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12763-8 [PMID: 18725631]
  5. BMC Evol Biol. 2014 Oct 04;14:212 [PMID: 25281000]
  6. PLoS Comput Biol. 2019 Jan 10;15(1):e1006286 [PMID: 30629591]
  7. Science. 2023 Mar 17;379(6637):1123-1130 [PMID: 36927031]
  8. Nucleic Acids Res. 2020 Jan 8;48(D1):D704-D715 [PMID: 31701156]
  9. PLoS Comput Biol. 2013;9(3):e1002957 [PMID: 23516347]
  10. Nature. 2018 Feb 1;554(7690):56-61 [PMID: 29364871]
  11. Bioinformatics. 2020 Jun 1;36(11):3457-3465 [PMID: 32129827]
  12. Nat Genet. 2016 Apr;48(4):427-37 [PMID: 26950095]
  13. Mamm Genome. 2022 Mar;33(1):123-134 [PMID: 34698892]
  14. Nat Genet. 2015 Jun;47(6):569-76 [PMID: 25915600]
  15. PLoS Comput Biol. 2011 Jun;7(6):e1002073 [PMID: 21695233]
  16. Cell Rep. 2015 Feb 17;10(6):993-1006 [PMID: 25683721]
  17. Bioinform Adv. 2021 Sep 29;2(1):vbab025 [PMID: 36699351]
  18. Brief Bioinform. 2022 May 13;23(3): [PMID: 35453145]
  19. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6544-9 [PMID: 20308572]
  20. Gene Ther. 2004 Oct;11 Suppl 1:S64-6 [PMID: 15454959]
  21. Nat Commun. 2023 Oct 14;14(1):6495 [PMID: 37838716]
  22. Genetics. 2017 Sep;207(1):9-27 [PMID: 28874452]
  23. Exp Anim. 2010;59(4):511-4 [PMID: 20660997]
  24. Genome Res. 2004 Jun;14(6):1107-18 [PMID: 15173116]
  25. Nucleic Acids Res. 2024 Jan 5;52(D1):D938-D949 [PMID: 38000386]
  26. PLoS Comput Biol. 2010 Dec 09;6(12):e1001028 [PMID: 21170309]
  27. Sci Rep. 2016 Aug 31;6:32404 [PMID: 27578529]
  28. Brief Bioinform. 2024 Jul 25;25(5): [PMID: 39171984]
  29. PLoS Comput Biol. 2024 Jan 10;20(1):e1011773 [PMID: 38198480]
  30. Brief Bioinform. 2011 Sep;12(5):463-73 [PMID: 21565935]
  31. Elife. 2021 May 04;10: [PMID: 33944782]
  32. PLoS One. 2013 May 01;8(5):e58977 [PMID: 23650495]
  33. Genome Biol. 2019 Nov 19;20(1):244 [PMID: 31744546]
  34. Nucleic Acids Res. 2004 Jun 04;32(10):3108-14 [PMID: 15181176]
  35. Cell Rep. 2017 Oct 24;21(4):1077-1088 [PMID: 29069589]
  36. Nucleic Acids Res. 2024 Jan 5;52(D1):D1333-D1346 [PMID: 37953324]
  37. Nucleic Acids Res. 2019 May 21;47(9):e51 [PMID: 30847485]
  38. Methods Mol Biol. 2017;1446:189-205 [PMID: 27812944]
  39. Mol Biol Evol. 2012 Jan;29(1):61-9 [PMID: 21705381]
  40. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7093-100 [PMID: 26644562]
  41. Bioinformatics. 2021 Aug 25;37(16):2414-2422 [PMID: 33576802]
  42. Curr Opin Genet Dev. 2015 Dec;35:16-24 [PMID: 26338499]
  43. BMC Bioinformatics. 2007 Sep 03;8:329 [PMID: 17767718]
  44. Bioinformatics. 2017 Jul 15;33(14):i190-i198 [PMID: 28881986]
  45. iScience. 2022 Mar 11;25(4):104054 [PMID: 35345456]
  46. Nat Rev Genet. 2018 Jun;19(6):357-370 [PMID: 29626206]
  47. Nucleic Acids Res. 2015 Feb 18;43(3):e20 [PMID: 25428368]
  48. Cell Rep Methods. 2023 Sep 25;3(9):100580 [PMID: 37703883]
  49. Nucleic Acids Res. 2015 Jul 1;43(W1):W128-33 [PMID: 25969450]
  50. BMC Biol. 2017 Jun 29;15(1):55 [PMID: 28662661]
  51. Mol Biol Evol. 2008 Dec;25(12):2699-707 [PMID: 18820252]
  52. Nature. 2021 Apr;592(7856):737-746 [PMID: 33911273]
  53. Dev Cell. 2018 Jul 2;46(1):112-125.e4 [PMID: 29974860]
  54. Mech Dev. 2010 May-Jun;127(5-6):247-64 [PMID: 20362667]
  55. Cell. 2019 Jun 13;177(7):1873-1887.e17 [PMID: 31178122]
  56. Mol Biol Evol. 2018 Jul 1;35(7):1653-1667 [PMID: 29697819]
  57. Elife. 2015 Mar 25;4: [PMID: 25807088]
  58. Science. 1999 Jul 30;285(5428):751-3 [PMID: 10427000]
  59. Nucleic Acids Res. 2020 Jul 2;48(W1):W566-W571 [PMID: 32392296]
  60. Nat Biotechnol. 2019 Jun;37(6):685-691 [PMID: 31061482]
  61. Bioinformatics. 2024 May 2;40(5): [PMID: 38696757]
  62. Science. 2020 Feb 14;367(6479):742-743 [PMID: 32054749]
  63. Nucleic Acids Res. 2023 Jan 6;51(D1):D638-D646 [PMID: 36370105]
  64. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W214-20 [PMID: 20576703]
  65. EMBO Rep. 2007 Jun;8(6):526-30 [PMID: 17545991]
  66. Future Sci OA. 2015 Nov 01;1(4):FSO63 [PMID: 28031915]
  67. Nat Genet. 2018 Aug;50(8):1171-1179 [PMID: 30013180]
  68. Genetics. 2022 Apr 4;220(4): [PMID: 35380658]
  69. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34226920]
  70. Front Immunol. 2023 Sep 12;14:1215869 [PMID: 37781402]
  71. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D572-80 [PMID: 16381935]
  72. Front Cell Dev Biol. 2019 Sep 02;7:175 [PMID: 31552245]
  73. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  74. Bioinformatics. 2023 Sep 2;39(9): [PMID: 37632792]
  75. Biomedicines. 2023 Sep 23;11(10): [PMID: 37892985]
  76. Bioinformatics. 2015 Oct 1;31(19):3147-55 [PMID: 26023104]
  77. Orphanet J Rare Dis. 2021 May 7;16(1):206 [PMID: 33962631]
  78. Genome Biol Evol. 2009 May 27;1:131-44 [PMID: 20333184]
  79. Science. 2000 Jan 7;287(5450):116-22 [PMID: 10615043]
  80. Dis Model Mech. 2022 Jul 1;15(7): [PMID: 35758016]
  81. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  82. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  83. Dis Model Mech. 2010 Jan-Feb;3(1-2):27-34 [PMID: 20075379]
  84. Bioinformatics. 2015 Feb 15;31(4):471-83 [PMID: 25236459]
  85. Genome Biol. 2016 Sep 07;17(1):184 [PMID: 27604469]
  86. Science. 2006 May 5;312(5774):700-1 [PMID: 16675685]
  87. Nat Methods. 2019 Aug;16(8):715-721 [PMID: 31363220]
  88. Genome Res. 2019 Feb;29(2):317-324 [PMID: 30679309]
  89. Front Immunol. 2021 Aug 13;12:693142 [PMID: 34484189]
  90. Nat Rev Genet. 2020 Mar;21(3):137-150 [PMID: 31913361]
  91. Nat Biomed Eng. 2022 Dec;6(12):1353-1369 [PMID: 36316368]
  92. Sci Signal. 2020 Aug 04;13(643): [PMID: 32753478]
  93. Nat Methods. 2024 Aug;21(8):1492-1500 [PMID: 38366243]
  94. PLoS One. 2009;4(2):e4346 [PMID: 19194489]
  95. Nature. 2000 Feb 10;403(6770):601-3 [PMID: 10688178]
  96. Genome Res. 2017 Nov;27(11):1843-1858 [PMID: 29021288]
  97. Nat Neurosci. 2016 Nov;19(11):1454-1462 [PMID: 27479844]
  98. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  99. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33515011]
  100. Nat Methods. 2018 Dec;15(12):1067-1073 [PMID: 30478323]
  101. Proc Natl Acad Sci U S A. 2021 Apr 13;118(15): [PMID: 33876751]
  102. Nat Methods. 2024 Aug;21(8):1546-1557 [PMID: 39039335]
  103. Nat Rev Genet. 2017 Sep;18(9):551-562 [PMID: 28607512]
  104. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34850822]
  105. Brief Funct Genomics. 2011 Sep;10(5):280-93 [PMID: 21764832]
  106. Circ Res. 2011 Aug 5;109(4):356-9 [PMID: 21817163]
  107. Nat Commun. 2022 Jun 27;13(1):3675 [PMID: 35760791]
  108. PLoS Comput Biol. 2019 Sep 3;15(9):e1007276 [PMID: 31479437]
  109. Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20645-50 [PMID: 24297902]
  110. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12 [PMID: 23401516]
  111. Mol Syst Biol. 2013 Oct 01;9:692 [PMID: 24084807]
  112. Nat Protoc. 2015 Dec;10(12):2004-15 [PMID: 26562621]
  113. J Mol Biol. 2007 Sep 21;372(3):817-45 [PMID: 17681532]
  114. Front Neurosci. 2018 Sep 07;12:605 [PMID: 30245614]
  115. Bioinformatics. 2023 Aug 1;39(8): [PMID: 37531293]
  116. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4285-8 [PMID: 10200254]
  117. Nat Rev Genet. 2016 Dec;17(12):744-757 [PMID: 27818507]
  118. Bioinformatics. 2024 Mar 4;40(3): [PMID: 38383067]
  119. Mol Biol Evol. 2006 Sep;23(9):1808-16 [PMID: 16809621]
  120. NPJ Syst Biol Appl. 2018 Jun 11;4:22 [PMID: 29900005]
  121. Methods Mol Biol. 2017;1446:133-146 [PMID: 27812940]
  122. Nucleic Acids Res. 2019 Jan 8;47(D1):D1038-D1043 [PMID: 30445645]
  123. Bioinformatics. 2020 Jul 1;36(Suppl_1):i219-i226 [PMID: 32657391]
  124. Evol Dev. 2001 Mar-Apr;3(2):109-19 [PMID: 11341673]
  125. Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2202584120 [PMID: 36730203]
  126. Nat Biotechnol. 2018 Oct 22;: [PMID: 30346941]
  127. Nat Rev Genet. 2011 Jul 18;12(8):575-82 [PMID: 21765459]
  128. Nature. 2013 Apr 25;496(7446):498-503 [PMID: 23594743]
  129. PLoS Comput Biol. 2011 Feb 03;7(2):e1001074 [PMID: 21304936]
  130. Nat Methods. 2013 Mar;10(3):221-7 [PMID: 23353650]
  131. Curr Opin Struct Biol. 2018 Jun;50:42-48 [PMID: 29112911]
  132. Nucleic Acids Res. 2022 Feb 28;50(4):1849-1863 [PMID: 35137181]
  133. Front Genet. 2022 Oct 17;13:1026487 [PMID: 36324501]
  134. PLoS Genet. 2015 Mar 06;11(3):e1005011 [PMID: 25748510]
  135. Nat Commun. 2021 Nov 9;12(1):6306 [PMID: 34753928]
  136. Front Pharmacol. 2022 Oct 12;13:995459 [PMID: 36313344]
  137. Elife. 2022 Sep 22;11: [PMID: 36134886]
  138. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1167-72 [PMID: 25092317]

Grants

  1. R01 OD011116/NIH HHS
  2. R35 GM128765/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0knowledgetransferevolutionaryacrossmolecularorganismsfunctionaldiseasespeciesreviewmethodstransferringcomponentsoriginkeygeneidentifyingagnologouscross-speciesResearchprovideinvaluableinsightshumanbiologydiseasesservingessentialtoolsexperimentsmodelingdrugtestingHoweverdivergencehumansresearchhinderseffectivestate-of-the-artcomputationallyprimarilyfocusingutilizetranscriptomedataand/ornetworksintroduceterm"agnology"describeequivalenceregardlessconceptbecomingpervasiveintegrativedata-drivenmodelsrolecanbecomeunclearaddressesfourareasinformationspecies:1annotation23inferringequivalentperturbedgenessets4celltypesconcludeoutlookfuturedirectionsseveralchallengesremainComputationalstrategiestranslationalbiomedicine

Similar Articles

Cited By