Multivariate variable selection in N-of-1 observational studies via additive Bayesian networks.

Christian Pascual, Keith Diaz, Sonia Jain
Author Information
  1. Christian Pascual: Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA, United States of America.
  2. Keith Diaz: Center for Behavioral Cardiovascular Health, Columbia University Medical Center, New York, NY, United States of America.
  3. Sonia Jain: Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA, United States of America. ORCID

Abstract

An N-of-1 observational design characterizes associations among several variables over time in a single individual. Traditional statistical models recommended for experimental N-of-1 trials may not adequately model these observational relationships. We propose an additive Bayesian network using a generalized linear mixed-effects model for the local mean as a novel method for modeling each of these relationships in a data-driven manner. We validate our approach via simulation studies and apply it to a 12-month observational N-of-1 study exploring the impact of stress on daily exercise engagement. We demonstrate the improved performance of the additive Bayesian network to recover the underlying network structure. From the empirical study, we found statistically discernible associations between reports of stress and physical activity on a population level, but these associations may differ at an individual level.

References

  1. Methods Inf Med. 1992 Jun;31(2):90-105 [PMID: 1635470]
  2. Digit Health. 2022 Aug 24;8:20552076221120725 [PMID: 36046637]
  3. BMC Public Health. 2015 Jan 17;15:9 [PMID: 25595219]
  4. Ann N Y Acad Sci. 2006 Nov;1083:196-213 [PMID: 17148741]
  5. Health Psychol Rev. 2017 Dec;11(4):307-323 [PMID: 28406349]
  6. Health Psychol Rev. 2017 Sep;11(3):222-234 [PMID: 28629262]
  7. Am J Prev Med. 2018 Apr;54(4):559-567 [PMID: 29429607]
  8. BMC Res Notes. 2015 Mar 17;8:84 [PMID: 25888971]
  9. Psychol Health. 2013;28(3):234-49 [PMID: 22943555]
  10. Transbound Emerg Dis. 2020 Nov;67(6):2961-2970 [PMID: 32526101]
  11. Sci Rep. 2016 May 05;6:25156 [PMID: 27146517]
  12. Artif Intell Med. 2011 Nov;53(3):181-204 [PMID: 21958683]
  13. Health Psychol. 2018 Dec;37(12):1145-1158 [PMID: 30221970]
  14. Prev Vet Med. 2019 Mar 1;164:23-32 [PMID: 30771891]
  15. Front Vet Sci. 2020 Feb 26;7:73 [PMID: 32175337]
  16. Am J Epidemiol. 2012 Dec 1;176(11):1051-9 [PMID: 23139247]
  17. Sci Rep. 2021 Jun 8;11(1):12016 [PMID: 34103576]
  18. Psychosom Med. 2018 Sep;80(7):620-627 [PMID: 29846309]
  19. Psychol Health. 2013;28(12):1391-406 [PMID: 23863041]

MeSH Term

Bayes Theorem
Humans
Observational Studies as Topic
Exercise
Multivariate Analysis
Models, Statistical
Male
Female
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0N-of-1observationalassociationsadditiveBayesiannetworkindividualmaymodelrelationshipsviastudiesstudystressleveldesigncharacterizesamongseveralvariablestimesingleTraditionalstatisticalmodelsrecommendedexperimentaltrialsadequatelyproposeusinggeneralizedlinearmixed-effectslocalmeannovelmethodmodelingdata-drivenmannervalidateapproachsimulationapply12-monthexploringimpactdailyexerciseengagementdemonstrateimprovedperformancerecoverunderlyingstructureempiricalfoundstatisticallydiscerniblereportsphysicalactivitypopulationdifferMultivariatevariableselectionnetworks

Similar Articles

Cited By