Recent Advancement in Novel Wound Healing Therapies by Using Antimicrobial Peptides Derived from Humans and Amphibians.

Trilochan Satapathy, Yugal Kishore, Ravindra Kumar Pandey, Shiv Shankar Shukla, Shiv Kumar Bhardwaj, Beena Gidwani
Author Information
  1. Trilochan Satapathy: Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India.
  2. Yugal Kishore: Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India.
  3. Ravindra Kumar Pandey: Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India.
  4. Shiv Shankar Shukla: Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India.
  5. Shiv Kumar Bhardwaj: Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India.
  6. Beena Gidwani: Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India.

Abstract

The skin is the biggest organ in the human body. It is the first line of protection against invading pathogens and the starting point for the immune system. The focus of this review is on the use of amphibian-derived peptides and antimicrobial peptides (AMPs) in the treatment of wound healing. When skin is injured, a chain reaction begins that includes inflammation, the formation of new tissue, and remodelling of existing tissue to aid in the healing process. Collaborating with non-immune cells, resident and recruited immune cells in the skin remove foreign invaders and debris, then direct the repair and regeneration of injured host tissues. Restoration of normal structure and function requires the healing of damaged tissues. However, a major issue that slows wound healing is infection. AMPs are just one type of host-defense chemicals that have developed in multicellular animals to regulate the immune response and limit microbial proliferation in response to various types of biological or physical stress. Therefore, peptides isolated from amphibians represent novel therapeutic tools and approaches for regenerating damaged skin. Peptides that speed up the healing process could be used as therapeutic lead molecules in future research into novel drugs. AMPs and amphibian-derived peptides may be endogenous mediators of wound healing and treat non-life-threatening skin and epithelial lesions. Thus, the present article was drafted with to incorporate different peptides used in wound healing, their method of preparation and routes of administration.

Keywords

References

  1. Ikuta K.S.; Swetschinski L.R.; Robles Aguilar G.; Sharara F.; Mestrovic T.; Gray A.P.; Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022,400(10369),2221-2248 [DOI: 10.1016/S0140-6736(22)02185-7]
  2. Zomer H. D.; Trentin A. G.; Skin wound healing in humans and mice: Challenges in translational research. J Dermatol Sci 2018,90(1),3-12
  3. Monavarian M.; Kader S.; Moeinzadeh S.; Jabbari E.; Regenerative scarfree skin wound healing. Tissue Eng Part B Rev 2019,25(4),294-311
  4. Tottoli E.M.; Dorati R.; Genta I.; Chiesa E.; Pisani S.; Conti B.; Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020,12(8),735 [PMID: 32764269]
  5. Iqbal A.; Jan A.; Wajid M.A.; Tariq S.; Management of Chronic Non-healing Wounds by Hirudotherapy. World J Plast Surg 2017,6(1),9-17 [PMID: 28289608]
  6. Rodrigues M.; Kosaric N.; Bonham C.A.; Gurtner G.C.; Wound healing: A cellular perspective. Physiol Rev 2019,99(1),665-706 [DOI: 10.1152/physrev.00067.2017]
  7. Sen C.K.; Human wound and its burden: Updated 2020 compendium of estimates. Adv Wound Care 2021,10(5),281-292 [DOI: 10.1089/wound.2021.0026]
  8. Liu N.; Li Z.; Meng B.; Bian W.; Li X.; Wang S.; Cao X.; Song Y.; Yang M.; Wang Y.; Tang J.; Yang X.; Accelerated wound healing induced by a novel Amphibian peptide (OA-FF10). Protein Pept Lett 2019,26(4),261-270 [DOI: 10.2174/0929866526666190124144027]
  9. Darvishi S.; Tavakoli S.; Kharaziha M.; Girault H.H.; Kaminski C.F.; Mela I.; Advances in the sensing and treatment of wound biofilms. Angew Chem Int Ed Engl 2022,61(13),e202112218 [PMID: 34806284]
  10. Su Y.; Yrastorza J.T.; Matis M.; Cusick J.; Zhao S.; Wang G.; Xie J.; Biofilms: Formation, research models, potential targets, and methods for prevention and treatment. Adv Sci 2022,9(29),e2203291 [PMID: 36031384]
  11. Sharma D.; Misba L.; Khan A.U.; Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob Resist Infect Control 2019,8(1),76 [DOI: 10.1186/s13756-019-0533-3]
  12. Minasyan H.; Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med 2019,27(1),19 [DOI: 10.1186/s13049-019-0596-4]
  13. Huan Y.; Kong Q.; Mou H.; Yi H.; Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol 2020,11,582779 [PMID: 33178164]
  14. Brandenburg L-O.; Merres J.; Albrecht L-J.; Varoga D.; Pufe T.; Antimicrobial peptides: Multifunctional drugs for different applications. Polymers 2012,4,539-560
  15. Pasupuleti M.; Schmidtchen A.; Malmsten M.; Antimicrobial peptides: Key components of the innate immune system. Crit Rev Biotechnol 2012,32(2),143-171 [PMID: 22074402]
  16. Boparai J.K.; Sharma P.K.; Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 2020,27(1),4-16 [PMID: 31438824]
  17. Yang X.; Wang Y.; Zhang Y.; Lee W.H.; Zhang Y.; Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians. Sci Rep 2016,6,19866 [DOI: 10.1038/srep19866]
  18. Tong Q.; Hu Z.F.; Du X.P.; Bie J.; Wang H.B.; Effects of seasonal hibernation on the similarities between the skin microbiota and gut microbiota of an Amphibian (Rana dybowskii). Microb Ecol 2020,79(4),898-909 [PMID: 31820074]
  19. Liu N.; Meng B.; Bian W.; Yang M.; Shu L.; Liu Y.; Fu Z.; Wang Y.; Wang Y.; Yang X.; The beneficial roles of poisonous skin secretions in survival strategies of the odorous frog Odorrana andersonii. Naturwissenschaften 2021,109(1),4 [DOI: 10.1007/s00114-021-01776-4]
  20. Demori I.; Rashed Z.E.; Corradino V.; Catalano A.; Rovegno L.; Queirolo L.; Salvidio S.; Biggi E.; Zanotti-Russo M.; Canesi L.; Catenazzi A.; Grasselli E.; Peptides for skin protection and healing in Amphibians. Molecules 2019,24(2),347 [DOI: 10.3390/molecules24020347]
  21. Patocka J.; Nepovimova E.; Klimova B.; Wu Q.; Kuca K.; Antimicrobial peptides: Amphibian host defense peptides. Curr Med Chem 2019,26(32),5924-5946 [DOI: 10.2174/0929867325666180713125314]
  22. Yin S.; Wang Y.; Liu N.; Yang M.; Hu Y.; Li X.; Potential skin protective effects after UVB irradiation afforded by an antioxidant peptide from Odorrana andersonii. Biomed Pharmacother 2019,120,109535
  23. Yokoyama H.; Kudo N.; Todate M.; Shimada Y.; Suzuki M.; Tamura K.; Skin regeneration of amphibians: A novel model for skin regeneration as adults. Dev Growth Differ 2018,60(6),316-325 [DOI: 10.1111/dgd.12544]
  24. Haque M.; Sartelli M.; McKimm J.; Abu Bakar M.; Health care-associated infections: An overview. Infect Drug Resist 2018,11,2321-2333 [DOI: 10.2147/IDR.S177247]
  25. Eming S.A.; Murray P.J.; Pearce E.J.; Metabolic orchestration of the wound healing response. Cell Metab 2021,33(9),1726-1743 [PMID: 34384520]
  26. Liu S.; Hur Y.H.; Cai X.; Cong Q.; Yang Y.; Xu C.; Bilate A.M.; Gonzales K.A.U.; Parigi S.M.; Cowley C.J.; Hurwitz B.; Luo J.D.; Tseng T.; Gur-Cohen S.; Sribour M.; Omelchenko T.; Levorse J.; Pasolli H.A.; Thompson C.B.; Mucida D.; Fuchs E.; A tissue injury sensing and repair pathway distinct from host pathogen defense. Cell 2023,186(10),2127-2143.e22 [PMID: 37098344]
  27. Khan A. Q.; Ahmad F.; Raza S. S.; Zarif L.; Siveen K. S.; Sher G.; Role of non-coding RNAs in the progression and resistance of cutaneous malignancies and autoimmune diseases. Semin Cancer Biol 2022,83,208-226
  28. Kawasumi A.; Sagawa N.; Hayashi S.; Yokoyama H.; Tamura K.; Wound healing in mammals and amphibians: Toward limb regeneration in mammals. Curr Top Microbiol Immunol 2013,367,33-49 [DOI: 10.1007/82_2012_305]
  29. Wong R.; Geyer S.; Weninger W.; Guimberteau J.C.; Wong J.K.; The dynamic anatomy and patterning of skin. Exp Dermatol 2016,25(2),92-98 [PMID: 26284579]
  30. Moreci R.S.; Lechler T.; Epidermal structure and differentiation. Curr Biol 2020,30(4),R144-R149 [DOI: 10.1016/j.cub.2020.01.004]
  31. Jiang Y.; Tsoi L.C.; Billi A.C.; Ward N.L.; Harms P.W.; Zeng C.; Maverakis E.; Kahlenberg J.M.; Gudjonsson J.E.; Cytokinocytes: The diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020,5(20),e142067 [DOI: 10.1172/jci.insight.142067]
  32. Joly-Tonetti N.; Wibawa J.I.D.; Bell M.; Tobin D.J.; An explanation for the mysterious distribution of melanin in human skin: A rare example of asymmetric (melanin) organelle distribution during mitosis of basal layer progenitor keratinocytes. Br J Dermatol 2018,179(5),1115-1126 [DOI: 10.1111/bjd.16926]
  33. Wertz P.; Epidermal lamellar granules. Skin Pharmacol Physiol 2018,31(5),262-268 [DOI: 10.1159/000491757]
  34. Ishida-Yamamoto A.; Igawa S.; Kishibe M.; Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol 2018,27(8),841-846 [DOI: 10.1111/exd.13674]
  35. Yousef H.; Alhajj M.; Sharma S.; “Anatomy, skin (integument), epidermis,” in StatPearls 2022
  36. Gallo R.L.; Hooper L.V.; Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 2012,12(7),503-516 [PMID: 22728527]
  37. Xu D.; Lu W.; Defensins: A double-edged sword in host immunity. Front Immunol 2020,11
  38. Wallace H.A.; Perera T.B.; Necrotizing fasciitis. StatPearls 2023
  39. Shield K.D.; Parry C.; Rehm J.; Chronic diseases and conditions related to alcohol use. Alcohol Res 2013,35(2),155-173 [PMID: 24881324]
  40. Sartelli M.; Coccolini F.; Kluger Y.; Agastra E.; Abu-Zidan F.M.; Abbas A.E.S.; Ansaloni L.; Adesunkanmi A.K.; Augustin G.; Bala M.; Baraket O.; Biffl W.L.; Ceresoli M.; Cerutti E.; Chiara O.; Cicuttin E.; Chiarugi M.; Coimbra R.; Corsi D.; Cortese F.; Cui Y.; Damaskos D.; de’Angelis N.; Delibegovic S.; Demetrashvili Z.; De Simone B.; de Jonge S.W.; Di Bella S.; Di Saverio S.; Duane T.M.; Fugazzola P.; Galante J.M.; Ghnnam W.; Gkiokas G.; Gomes C.A.; Griffiths E.A.; Hardcastle T.C.; Hecker A.; Herzog T.; Karamarkovic A.; Khokha V.; Kim P.K.; Kim J.I.; Kirkpatrick A.W.; Kong V.; Koshy R.M.; Inaba K.; Isik A.; Ivatury R.; Labricciosa F.M.; Lee Y.Y.; Leppäniemi A.; Litvin A.; Luppi D.; Maier R.V.; Marinis A.; Marwah S.; Mesina C.; Moore E.E.; Moore F.A.; Negoi I.; Olaoye I.; Ordoñez C.A.; Ouadii M.; Peitzman A.B.; Perrone G.; Pintar T.; Pipitone G.; Podda M.; Raşa K.; Ribeiro J.; Rodrigues G.; Rubio-Perez I.; Sall I.; Sato N.; Sawyer R.G.; Shelat V.G.; Sugrue M.; Tarasconi A.; Tolonen M.; Viaggi B.; Celotti A.; Casella C.; Pagani L.; Dhingra S.; Baiocchi G.L.; Catena F.; WSES/GAIS/WSIS/SIS-E/AAST global clinical pathways for patients with skin and soft tissue infections. World J Emerg Surg 2022,17(1),3 [DOI: 10.1186/s13017-022-00406-2]
  41. Malanovic N.; Lohner K.; Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 2016,9(3),59 [PMID: 27657092]
  42. Cheung G.Y.C.; Bae J.S.; Otto M.; Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021,12(1),547-569 [DOI: 10.1080/21505594.2021.1878688]
  43. Cao X.; Wang Y.; Wu C.; Li X.; Fu Z.; Yang M.; Bian W.; Wang S.; Song Y.; Tang J.; Yang X.; Author correction: Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Sci Rep 2018,8(1),15906 [DOI: 10.1038/s41598-018-33558-w]
  44. Li X.; Wang Y.; Zou Z.; Yang M.; Wu C.; Su Y.; Tang J.; Yang X.; OM-LV20, a novel peptide from odorous frog skin, accelerates wound healing in vitro and in vivo. Chem Biol Drug Des 2018,91(1),126-136 [DOI: 10.1111/cbdd.13063]
  45. Gurtner G.C.; Werner S.; Barrandon Y.; Longaker M.T.; Wound repair and regeneration. Nature 2008,453(7193),314-321 [DOI: 10.1038/nature07039]
  46. Piipponen M.; Li D.; Landén N.X.; The immune functions of keratinocytes in skin wound healing. Int J Mol Sci 2020,21(22),8790 [DOI: 10.3390/ijms21228790]
  47. Wang Y.; Feng Z.; Yang M.; Zeng L.; Qi B.; Yin S.; Li B.; Li Y.; Fu Z.; Shu L.; Fu C.; Qin P.; Meng Y.; Li X.; Yang Y.; Tang J.; Yang X.; Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol Res b2021,163,105296 [DOI: 10.1016/j.phrs.2020.105296]
  48. Percival S.L.; Hill K.E.; Williams D.W.; Hooper S.J.; Thomas D.W.; Costerton J.W.; A review of the scientific evidence for biofilms in wounds. Wound Repair Regen 2012,20(5),647-657 [DOI: 10.1111/j.1524-475X.2012.00836.x]
  49. Withycombe C.; Purdy K.J.; Maddocks S.E.; Micro-management: Curbing chronic wound infection. Mol Oral Microbiol 2017,32(4),263-274 [DOI: 10.1111/omi.12174]
  50. Elston D.M.; Topical antibiotics in dermatology: Emerging patterns of resistance. Dermatol Clin 2009,27(1),25-31 [DOI: 10.1016/j.det.2008.07.004]
  51. Schwartz R.A.; Al-Mutairi N.; Topical antibiotics in dermatology: An update the gulf. J Dermatol Venereol 2010,17,1-19
  52. AlMatar M.; Albarri O.; Lakhal R.; Ocal M.M.; Var I.; Köksal F.; Bacterial pathogens: Potential source for antimicrobial peptides. Curr Protein Pept Sci 2023,24(7),551-566 [PMID: 37496250]
  53. Guay D.R.; Topical clindamycin in the management of acne vulgaris. Expert Opin Pharmacother 2007,8(15),2625-2664 [DOI: 10.1517/14656566.8.15.2625]
  54. Spížek J.; Řezanka T.; Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol 2017,133,20-28 [DOI: 10.1016/j.bcp.2016.12.001]
  55. Alikhan A.; Sayed C.; Alavi A.; Alhusayen R.; Brassard A.; Burkhart C.; Crowell K.; Eisen D.B.; Gottlieb A.B.; Hamzavi I.; Hazen P.G.; Jaleel T.; Kimball A.B.; Kirby J.; Lowes M.A.; Micheletti R.; Miller A.; Naik H.B.; Orgill D.; Poulin Y.; North American clinical management guidelines for Hidradenitis suppurativa: A publication from the United States and Canadian hidradenitis Suppurativa Foundations: Part I: Diagnosis, evaluation, and the use of complementary and procedural management. J Am Acad Dermatol 2019,81(1),76-90 [DOI: 10.1016/j.jaad.2019.02.067]
  56. Aoki S.; Nakase K.; Nakaminami H.; Wajima T.; Hayashi N.; Noguchi N.; Transferable multidrug-resistance plasmid carrying a novel macrolide-clindamycin resistance gene, erm(50), in cutibacterium acnes. Antimicrob Agents Chemother 2020,64(3),e01810-19 [DOI: 10.1128/AAC.01810-19]
  57. Assefa M.; Inducible clindamycin-resistant staphylococcus aureus strains in africa: A systematic review. Int J Microbiol 2022,2022,1835603 [DOI: 10.1155/2022/1835603]
  58. Temiz S.A.; Daye M.; Dapsone for the treatment of acne vulgaris: Do the risks outweigh the benefits? Cutan Ocul Toxicol 2022,41(1),60-66 [DOI: 10.1080/15569527.2021.2024565]
  59. Swartzentruber G.S.; Yanta J.H.; Pizon A.F.; Methemoglobinemia as a complication of topical dapsone. N Engl J Med 2015,372(5),491-492 [DOI: 10.1056/NEJMc1408272]
  60. Koripella R.K.; Chen Y.; Peisker K.; Koh C.S.; Selmer M.; Sanyal S.; Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J Biol Chem 2012,287(36),30257-30267 [DOI: 10.1074/jbc.M112.378521]
  61. Schöfer H.; Simonsen L.; Fusidic acid in dermatology: An updated review. Eur J Dermatol 2010,20(1),6-15 [DOI: 10.1684/ejd.2010.0833]
  62. Sudhir Dhote N.; Dineshbhai Patel R.; Kuwar U.; Agrawal M.; Alexander A.; Jain P.; Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting. Curr Cancer Drug Targets 2024,24,1-22
  63. Bertolotti A.; Sbidian E.; Join-Lambert O.; Bourgault-Villada I.; Moyal-Barracco M.; Perrot P.; Jouan N.; Yordanov Y.; Sidorkiewicz S.; Chazelas K.; Bru-Daprés M.F.; Caumes E.; Sei J.F.; Chosidow O.; Beylot-Barry M.; Guidelines for the management of Hidradenitis suppurativa: recommendations supported by the Centre of Evidence of the French Society of Dermatology. Br J Dermatol 2021,184(5),963-965 [DOI: 10.1111/bjd.19710]
  64. McClellan K.J.; Noble S.; Topical metronidazole. A review of its use in rosacea. Am J Clin Dermatol 2000,1(3),191-199 [DOI: 10.2165/00128071-200001030-00007]
  65. Tucaliuc A.; Blaga A.C.; Galaction A.I.; Cascaval D.; Mupirocin: Applications and production. Biotechnol Lett 2019,41(4-5),495-502 [DOI: 10.1007/s10529-019-02670-w]
  66. MacGibeny M.A.; Jo J.H.; Kong H.H.; Antibiotic stewardship in dermatology-reducing the risk of prolonged antimicrobial resistance in skin. JAMA Dermatol 2022,158(9),989-991 [DOI: 10.1001/jamadermatol.2022.3168]
  67. Bandyopadhyay D.; Topical antibacterials in dermatology. Indian J Dermatol 2021,66(2),117-125 [DOI: 10.4103/ijd.IJD_99_18]
  68. Gelmetti C.; Local antibiotics in dermatology. Dermatol Ther 2008,21(3),187-195 [DOI: 10.1111/j.1529-8019.2008.00190.x]
  69. R N.; K N.R.; Sun Y.; Bacitracin topical 2022
  70. Fàbrega A.; Madurga S.; Giralt E.; Vila J.; Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009,2(1),40-61 [DOI: 10.1111/j.1751-7915.2008.00063.x]
  71. Rosen T.; Albareda N.; Rosenberg N.; Alonso F.G.; Roth S.; Zsolt I.; Hebert A.A.; Efficacy and safety of ozenoxacin cream for treatment of adult and pediatric patients with impetigo: A randomized clinical trial. JAMA Dermatol 2018,154(7),806-813 [DOI: 10.1001/jamadermatol.2018.1103]
  72. Jain A.; Jain P.; Bajaj S.; Majumdar A.; Soni P.; Chemoprofiling and antioxidant activity of edible curcuma species. Food Humanit 2023,1,1027-1039
  73. Vizioli J.; Salzet M.; Antimicrobial peptides from animals: Focus on invertebrates. Trends Pharmacol Sci 2002,23(11),494-496 [PMID: 12413797]
  74. Van Epps H.L.; René Dubos: Unearthing antibiotics. J Exp Med 2006,203(2),259 [PMID: 16528813]
  75. Mahlapuu M.; Håkansson J.; Ringstad L.; Björn C.; Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol 2016,6,194 [PMID: 28083516]
  76. McClure N.S.; Day T.; A theoretical examination of the relative importance of evolution management and drug development for managing resistance. Proc Biol Sci 2014,281(1797),20141861 [PMID: 25377456]
  77. Patel R.; Kuwar U.; Dhote N.; Alexander A.; Nakhate K.; Jain P.; Ajazuddin ; Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr Drug Deliv 2024,21(2),193-210 [PMID: 36644864]
  78. Moretta A.; Scieuzo C.; Petrone A.M.; Salvia R.; Manniello M.D.; Franco A.; Lucchetti D.; Vassallo A.; Vogel H.; Sgambato A.; Falabella P.; Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol 2021,11,668632 [PMID: 34195099]
  79. Kurpe S.R.; Grishin S.Y.; Surin A.K.; Panfilov A.V.; Slizen M.V.; Chowdhury S.D.; Galzitskaya O.V.; Antimicrobial and amyloidogenic activity of peptides. Can antimicrobial peptides be used against SARS-CoV-2? Int J Mol Sci 2020,21(24),9552 [PMID: 33333996]
  80. Pushpanathan M.; Gunasekaran P.; Rajendhran J.; Antimicrobial peptides: Versatile biological properties. Int J Pept 2013,2013,675391 [PMID: 23935642]
  81. Gelband H.; Miller-Petrie M.; Pant S.; Gandra S.; Levinson J.; Barter D.; White A.; Laxminarayan R.; State of the World’s Antibiotics 2015
  82. Bhairam M.; Prasad J.; Verma K.; Jain P.; Gidwani B.; Formulation of transdermal patch of Losartan Potassium and Glipizide for the treatment of hypertension and diabetes. Mater Today Proc 2023,83,59-68
  83. Alencar-Silva T.; Braga M.C.; Santana G.O.S.; Saldanha-Araujo F.; Pogue R.; Dias S.C.; Franco O.L.; Carvalho J.L.; Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol Adv 2018,36(8),2019-2031 [PMID: 30118811]
  84. Liu H.; Duan Z.; Tang J.; Lv Q.; Rong M.; Lai R.; A short peptide from frog skin accelerates diabetic wound healing. FEBS J 2014,281(20),4633-4643 [PMID: 25117795]
  85. Liu H.; Mu L.; Tang J.; Shen C.; Gao C.; Rong M.; Zhang Z.; Liu J.; Wu X.; Yu H.; Lai R.; A potential wound healing-promoting peptide from frog skin. Int J Biochem Cell Biol 2014,49,32-41 [PMID: 24441016]
  86. Jain A.; Jain P.; Soni P.; Tiwari A.; Tiwari S.P.; Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J Gastrointest Cancer 2023,54(1),90-95 [PMID: 35043370]
  87. Tokumaru S.; Sayama K.; Shirakata Y.; Komatsuzawa H.; Ouhara K.; Hanakawa Y.; Yahata Y.; Dai X.; Tohyama M.; Nagai H.; Yang L.; Higashiyama S.; Yoshimura A.; Sugai M.; Hashimoto K.; Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 2005,175(7),4662-4668 [PMID: 16177113]
  88. Kolar S.S.; McDermott A.M.; Role of host-defence peptides in eye diseases. Cell Mol Life Sci 2011,68(13),2201-2213 [PMID: 21584809]
  89. Huang H.N.; Pan C.Y.; Wu H.Y.; Chen J.Y.; Antimicrobial peptide Epinecidin-1 promotes complete skin regeneration of methicillin-resistant Staphylococcus aureus-infected burn wounds in a swine model. Oncotarget 2017,8(13),21067-21080 [PMID: 28177877]
  90. Tang J.; Liu H.; Gao C.; Mu L.; Yang S.; Rong M.; Zhang Z.; Liu J.; Ding Q.; Lai R.; A small peptide with potential ability to promote wound healing. PLoS One 2014,9(3),e92082 [PMID: 24647450]
  91. Lipsky B.A.; Holroyd K.J.; Zasloff M.; Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: A randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 2008,47(12),1537-1545 [DOI: 10.1086/593185]
  92. Lavery L.A.; Armstrong D.G.; Murdoch D.P.; Peters E.J.; Lipsky B.A.; Validation of the infectious diseases society of america’s diabetic foot infection classification system. Clin Infect Dis 2007,44(4),562-565 [DOI: 10.1086/511036]
  93. Ma L.; Xie X.; Liu H.; Huang Y.; Wu H.; Jiang M.; Xu P.; Ye X.; Zhou C.; Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics 2020,10(3),1373-1390 [PMID: 31938070]
  94. Wu J.; Yang J.; Wang X.; Wei L.; Mi K.; Shen Y.; Liu T.; Yang H.; Mu L.; A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem J 2018,475(17),2785-2799 [DOI: 10.1042/BCJ20180286]
  95. Feng G.; Wei L.; Che H.; Shen Y.; Yang J.; Mi K.; Liu J.; Wu J.; Yang H.; Mu L.; A frog peptide ameliorates skin photoaging through scavenging reactive oxygen species. Front Pharmacol 2022,12,761011 [DOI: 10.3389/fphar.2021.761011]
  96. Shi Y.; Li C.; Wang M.; Chen Z.; Luo Y.; Xia X.S.; Song Y.; Sun Y.; Zhang A.M.; Cathelicidin-DM is an antimicrobial peptide from Duttaphrynus melanostictus and has woundhealing therapeutic potential. ACS Omega 2020,5(16),9301-9310 [DOI: 10.1021/acsomega.0c00189]
  97. Bian W.; Meng B.; Li X.; Wang S.; Cao X.; Liu N.; Yang M.; Tang J.; Wang Y.; Yang X.; OA-GL21, a novel bioactive peptide from Odorrana andersonii, accelerated the healing of skin wounds. Biosci Rep 2018,38(3),BSR20180215 [DOI: 10.1042/BSR20180215]
  98. Zhang Y.; Wang Y.; Zeng L.; Liu Y.; Sun H.; Li S.; Wang S.; Shu L.; Liu N.; Yin S.; Wang J.; Ni D.; Wu Y.; Yang Y.; He L.; Meng B.; Yang X.; Amphibian-derived peptide homodimer OA-GL17d promotes skin wound regeneration through the miR-663a/TGF-β1/Smad axis. Burns Trauma 2022,10,tkac032 [DOI: 10.1093/burnst/tkac032]
  99. Fan X.L.; Yu S.S.; Zhao J.L.; Li Y.; Zhan D.J.; Xu F.; Lin Z.H.; Chen J.; Brevinin-2PN, an antimicrobial peptide identified from dark-spotted frog (Pelophylax nigromaculatus), exhibits wound-healing activity. Dev Comp Immunol 2022,137,104519 [DOI: 10.1016/j.dci.2022.104519]
  100. Kang H.K.; Seo C.H.; Luchian T.; Park Y.; Pse-T2, an antimicrobial peptide with high-level, broad-spectrum antimicrobial potency and skin biocompatibility against multidrug-resistant Pseudomonas aeruginosa infection. Antimicrob Agents Chemother 2018,62(12),e01493-e18 [DOI: 10.1128/AAC.01493-18]
  101. Mu L.; Tang J.; Liu H.; Shen C.; Rong M.; Zhang Z.; Lai R.; A potential wound-healing-promoting peptide from salamander skin. FASEB J 2014,28(9),3919-3929 [PMID: 24868009]
  102. Luo X.; Ouyang J.; Wang Y.; Zhang M.; Fu L.; Xiao N.; Gao L.; Zhang P.; Zhou J.; Wang Y.; A novel anionic cathelicidin lacking direct antimicrobial activity but with potent anti-inflammatory and wound healing activities from the salamander Tylototriton kweichowensis. Biochimie 2021,191,37-50 [DOI: 10.1016/j.biochi.2021.08.007]
  103. Chang J.; He X.; Hu J.; Kamau P.M.; Lai R.; Rao D.; Luo L.; Bv8-Like toxin from the frog venom of Amolops jingdongensis promotes wound healing via the interleukin-1 signaling pathway. Toxins 2019,12(1),15 [DOI: 10.3390/toxins12010015]
  104. Song X.; Pan H.; Wang H.; Liao X.; Sun D.; Xu K.; Chen T.; Zhang X.; Wu M.; Wu D.; Gao Y.; Identification of new dermaseptins with self-assembly tendency: membrane disruption, biofilm eradication, and infected wound healing efficacy. Acta Biomater 2020,109,208-219 [DOI: 10.1016/j.actbio.2020.03.024]
  105. Fu S.; Du C.; Zhang Q.; Liu J.; Zhang X.; Deng M.; A novel peptide from Polypedates megacephalus promotes wound healing in mice. Toxins 2022,14(11),753 [DOI: 10.3390/toxins14110753]
  106. Nakagami H.; Nishikawa T.; Tamura N.; Maeda A.; Hibino H.; Mochizuki M.; Shimosato T.; Moriya T.; Morishita R.; Tamai K.; Tomono K.; Kaneda Y.; Modification of a novel angiogenic peptide, AG30, for the development of novel therapeutic agents. J Cell Mol Med 2012,16(7),1629-1639 [DOI: 10.1111/j.1582-4934.2011.01406.x]
  107. Ostorhazi E.; Holub M.C.; Rozgonyi F.; Harmos F.; Cassone M.; Wade J.D.; Otvos L.; Broad-spectrum antimicrobial efficacy of peptide A3-APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int J Antimicrob Agents 2011,37(5),480-484 [PMID: 21353493]
  108. Hoq M.I.; Niyonsaba F.; Ushio H.; Aung G.; Okumura K.; Ogawa H.; Human catestatin enhances migration and proliferation of normal human epidermal keratinocytes. J Dermatol Sci 2011,64(2),108-118 [PMID: 21872447]
  109. Chung E.M.C.; Dean S.N.; Propst C.N.; Bishop B.M.; van Hoek M.L.; Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. NPJ Biofilms Microbiomes 2017,3,9 [PMID: 28649410]
  110. Gonzalez-Curiel I.; Trujillo V.; Montoya-Rosales A.; Rincon K.; Rivas-Calderon B.; deHaro-Acosta J.; Marin-Luevano P.; Lozano-Lopez D.; Enciso-Moreno J.A.; Rivas-Santiago B.; 1,25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: An in vitro model. PLoS One 2014,9(10),e111355 [PMID: 25337708]
  111. Hirsch T.; Spielmann M.; Zuhaili B.; Fossum M.; Metzig M.; Koehler T.; Steinau H.U.; Yao F.; Onderdonk A.B.; Steinstraesser L.; Eriksson E.; Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med 2009,11(3),220-228 [PMID: 19115333]
  112. Marin-Luevano P.; Trujillo V.; Rodriguez-Carlos A.; González-Curiel I.; Enciso-Moreno J.A.; Hancock R.E.W.; Rivas-Santiago B.; Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment. Peptides 2018,101,135-144 [PMID: 29353019]
  113. Steinstraesser L.; Hirsch T.; Schulte M.; Kueckelhaus M.; Jacobsen F.; Mersch E.A.; Stricker I.; Afacan N.; Jenssen H.; Hancock R.E.; Kindrachuk J.; Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 2012,7(8),e39373 [PMID: 22879874]
  114. Bolatchiev A.; Baturin V.; Bazikov I.; Maltsev A.; Kunitsina E.; Effect of antimicrobial peptides HNP-1 and hBD-1 on Staphylococcus aureus strains in vitro and in vivo. Fundam Clin Pharmacol 2020,34(1),102-108 [PMID: 31313350]
  115. Grönberg A.; Mahlapuu M.; Ståhle M.; Whately-Smith C.; Rollman O.; Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Repair Regen 2014,22(5),613-621 [PMID: 25041740]
  116. Koczulla R.; von Degenfeld G.; Kupatt C.; Krötz F.; Zahler S.; Gloe T.; Issbrücker K.; Unterberger P.; Zaiou M.; Lebherz C.; Karl A.; Raake P.; Pfosser A.; Boekstegers P.; Welsch U.; Hiemstra P.S.; Vogelmeier C.; Gallo R.L.; Clauss M.; Bals R.; An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003,111(11),1665-1672 [PMID: 12782669]
  117. Sommer A.; Fries A.; Cornelsen I.; Speck N.; Koch-Nolte F.; Gimpl G.; Andrä J.; Bhakdi S.; Reiss K.; Melittin modulates keratinocyte function through P2 receptor-dependent ADAM activation. J Biol Chem 2012,287(28),23678-23689 [PMID: 22613720]
  118. Pfalzgraff A.; Bárcena-Varela S.; Heinbockel L.; Gutsmann T.; Brandenburg K.; Martinez-de-Tejada G.; Weindl G.; Antimicrobial endotoxin-neutralizing peptides promote keratinocyte migration via P2X7 receptor activation and accelerate wound healing in vivo. Br J Pharmacol 2018,175(17),3581-3593 [PMID: 29947028]
  119. Pfalzgraff A.; Heinbockel L.; Su Q.; Gutsmann T.; Brandenburg K.; Weindl G.; Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Sci Rep 2016,6,31577 [DOI: 10.1038/srep31577]
  120. Pfalzgraff A.; Heinbockel L.; Su Q.; Brandenburg K.; Weindl G.; Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses. Biochem Pharmacol 2017,140,64-72 [PMID: 28539262]
  121. Heunis T.D.; Smith C.; Dicks L.M.; Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 2013,57(8),3928-3935 [PMID: 23733456]
  122. Kim D.J.; Lee Y.W.; Park M.K.; Shin J.R.; Lim K.J.; Cho J.H.; Kim S.C.; Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids 2014,46(10),2333-2343 [PMID: 24952727]
  123. Flamm R.K.; Rhomberg P.R.; Simpson K.M.; Farrell D.J.; Sader H.S.; Jones R.N.; In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother 2015,59(3),1751-1754 [PMID: 25583717]
  124. Ghiselli R.; Giacometti A.; Cirioni O.; Mocchegiani F.; Orlando F.; Kamysz W.; Del Prete M.S.; Lukasiak J.; Scalise G.; Saba V.; Temporin A as a prophylactic agent against methicillin sodium-susceptible and methicillin sodium-resistant Staphylococcus epidermidis vascular graft infection. J Vasc Surg 2002,36(5),1027-1030 [PMID: 12422090]
  125. Tomioka H.; Nakagami H.; Tenma A.; Saito Y.; Kaga T.; Kanamori T.; Tamura N.; Tomono K.; Kaneda Y.; Morishita R.; Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One 2014,9(3),e92597 [PMID: 24675668]
  126. Chen, Y.; Qian, H.; Peng, D.; Jiang, Y.; Liu, Q.; Tan, Y.; Feng, L.; Cheng, B.; Li, G. Antimicrobial peptide-modified AIE visual composite wound dressing for promoting rapid healing of infected wounds. Front. Bioeng. Biotechnol., 2024, 12(11), 1338172.
  127. Lin Z.; Wu T.; Wang W.; Li B.; Wang M.; Chen L.; Xia H.; Zhang T.; Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol 2019,140,330-342 [PMID: 31421174]
  128. Rima M.; Rima M.; Fajloun Z.; Sabatier J.M.; Bechinger B.; Naas T.; Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics 2021,10(9),1095 [PMID: 34572678]
  129. Sinha S.; Zheng L.; Mu Y.; Ng W.J.; Bhattacharjya S.; Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. Sci Rep 2017,7(1),17795 [PMID: 29259246]
  130. Ruiz N.; Kahne D.; Silhavy T.J.; Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 2006,4(1),57-66 [PMID: 16357861]
  131. Li J.; Koh J.J.; Liu S.; Lakshminarayanan R.; Verma C.S.; Beuerman R.W.; Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci 2017,11,73 [PMID: 28261050]
  132. Hilchie A.L.; Wuerth K.; Hancock R.E.W.; Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 2013,9(12),761-768 [PMID: 24231617]
  133. Oh J.E.; Hong S.Y.; Lee K.H.; Structure-activity relationship study: Short antimicrobial peptides. J Pept Res 1999,53(1),41-46 [PMID: 10195440]
  134. Andersson D.I.; Hughes D.; Kubicek-Sutherland J.Z.; Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016,26,43-57 [PMID: 27180309]
  135. Veronese F.M.; Mero A.; The impact of PEGylation on biological therapies. BioDrugs 2008,22(5),315-329 [PMID: 18778113]
  136. Barbieri E.; Porcu G.; Dona’ D.; Falsetto N.; Biava M.; Scamarcia A.; Cantarutti L.; Cantarutti A.; Giaquinto C.; Non-bullous impetigo: Incidence, prevalence, and treatment in the pediatric primary care setting in italy. Front Pediatr 2022,10,753694 [DOI: 10.3389/fped.2022.753694]
  137. Gautam S.; Mutha R.; Sahu A.K.; Gautam A.; Joshi R.K.; Management of folliculitis decalvans with ayurveda: A case report. J Ayurveda Integr Med 2022,13(4),100673 [DOI: 10.1016/j.jaim.2022.100673]
  138. Vilallonga R.; Mazarro A.; Rodríguez-Luna M.R.; Caubet E.; Fort J.M.; Armengol M.; Guirao X.; Massive necrotizing fasciitis: A life threatening entity. J Surg Case Rep 2019,2019(11),rjz269 [DOI: 10.1093/jscr/rjz269]
  139. Initial treatment for acute bacterial skin infections (ABSSSI) caused by Staphylococcus aureus. PolyMediX Inc 2012
  140. LytiX Biopharma AS 2014 A Phase II, randomised, double-blind, Placebo-controlled study to evaluate the efficacy and safety of two doses of LTX-109 (1 % and 2 %) versus placebo in impetigo. 2014
  141. Derma G.; A randomised, parallel-group, double-blind, placebo-controlled study of dpk-060 to investigate clinical safety and efficacy in patients with acute external otitis. 2012
  142. Dipexium pharmaceuticals Inc. 2017
  143. Protelight pharmaceuticals australia pty ltd 2022 a phase 1 study to evaluate the safety. Available from : https://synapse.patsnap.com/organization/127f0aa6742f163284d51e467e9b2e18 2022
  144. Maruho C.; A Phase 2, randomized, vehicle-controlled, double-blind, multicenter study to evaluate the safety and efficacy of three once-daily cls001 topical gels versus vehicle administered for 12 weeks to subjects with acne. 2015
  145. Xie Y.; Effects of antimicrobial peptides application after non-surgical periodontal therapy on treatment of stage iii and grade b periodontitis. 2022
  146. Skwarczynski M.; Bashiri S.; Yuan Y.; Ziora Z.M.; Nabil O.; Masuda K.; Khongkow M.; Rimsueb N.; Cabral H.; Ruktanonchai U.; Blaskovich M.A.T.; Toth I.; Antimicrobial activity enhancers: Towards smart delivery of antimicrobial agents. Antibiotics 2022,11(3),412 [DOI: 10.3390/antibiotics11030412]
  147. Afshar A.; Yuca E.; Wisdom C.; Alenezi H.; Ahmed J.; Tamerler C.; Edirisinghe M.; Next-generation antimicrobial peptides (AMPs) incorporated nanofiber wound dressings. Med Devices Sens 2021,4,1-11 [DOI: 10.1002/mds3.10144]
  148. Prasher P.; Sharma M.; Mudila H.; Gupta G.; Kumar Sharma A.; Kumar D.; Bakshi H.A.; Negi P.; Kapoor D.N.; Kumar Chellappan D.; Tambuwala M.M.; Dua K.; Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid Interface Sci Commun 2020,35,100244 [DOI: 10.1016/j.colcom.2020.100244]
  149. Rai A.; Pinto S.; Velho T.R.; Ferreira A.F.; Moita C.; Trivedi U.; Evangelista M.; Comune M.; Rumbaugh K.P.; Simões P.N.; Moita L.; Ferreira L.; One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials 2016,85,99-110 [DOI: 10.1016/j.biomaterials.2016.01.051]
  150. Pal I.; Bhattacharyya D.; Kar R.K.; Zarena D.; Bhunia A.; Atreya H.S.; A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria. Sci Rep 2019,9(1),4485 [DOI: 10.1038/s41598-019-41005-7]
  151. Masimen M.A.A.; Harun N.A.; Maulidiani M.; Ismail W.I.W.; Overcoming methicillin-resistance staphylococcus aureus (mrsa) using antimicrobial peptides-silver nanoparticles. Antibiotics 2022,11(7),951 [DOI: 10.3390/antibiotics11070951]
  152. Liu Q.; Zhang Y.; Huang J.; Xu Z.; Li X.; Yang J.; Huang H.; Tang S.; Chai Y.; Lin J.; Yang C.; Liu J.; Lin S.; Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing. J Nanobiotechnology 2022,20(1),386 [DOI: 10.1186/s12951-022-01600-9]
  153. Ahire J.J.; Neveling D.P.; Dicks L.M.; Co-spinning of silver nanoparticles with nisin increases the antimicrobial spectrum of PDLLA: PEO nanofibers. PEO Nanofibers Curr Microbiol 2015,71(1),24-30 [DOI: 10.1007/s00284-015-0813-y]
  154. Zhang L.; Xue Y.; Gopalakrishnan S.; Li K.; Han Y.; Rotello V.M.; Antimicrobial peptide-loaded pectolite nanorods for enhancing wound-healing and biocidal activity of titanium. ACS Appl Mater Interfaces a2021,13(24),28764-28773 [DOI: 10.1021/acsami.1c04895]
  155. Sperandeo P.; Bosco F.; Clerici F.; Polissi A.; Gelmi M.L.; Romanelli A.; Covalent grafting of antimicrobial peptides onto microcrystalline cellulose. ACS Appl Bio Mater 2020,3(8),4895-4901 [DOI: 10.1021/acsabm.0c00412]
  156. Almaaytah A.; Mohammed G.K.; Abualhaijaa A.; Al-Balas Q.; Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Devel Ther 2017,11,3159-3170 [DOI: 10.2147/DDDT.S147450]
  157. Dizaj S.M.; Mennati A.; Jafari S.; Khezri K.; Adibkia K.; Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 2015,5(1),19-23 [DOI: 10.5681/apb.2015.003]
  158. Benalcázar J.; Lasso E.D.; Ibarra-Barreno C.M.; Arcos Pareja J.A.; Vispo N.S.; Chacón-Torres J.C.; Briceño S.; Photochemical optimization of a silver nanoprism/graphene oxide nanocomposite’s antibacterial properties. ACS Omega 2022,7(50),46745-46755 [DOI: 10.1021/acsomega.2c05793]

MeSH Term

Wound Healing
Animals
Humans
Amphibians
Skin
Antimicrobial Peptides
Antimicrobial Cationic Peptides
Amphibian Proteins

Chemicals

Antimicrobial Peptides
Antimicrobial Cationic Peptides
Amphibian Proteins

Word Cloud

Created with Highcharts 10.0.0healingskinpeptideswoundimmuneAMPsamphibian-derivedantimicrobialinjuredtissueprocesscellstissuesdamagedinfectionresponseamphibiansnoveltherapeuticPeptidesusedWoundbiggestorganhumanbodyfirstlineprotectioninvadingpathogensstartingpointsystemfocusreviewusetreatmentchainreactionbeginsincludesinflammationformationnewremodellingexistingaidCollaboratingnon-immuneresidentrecruitedremoveforeigninvadersdebrisdirectrepairregenerationhostRestorationnormalstructurefunctionrequiresHowevermajorissueslowsjustonetypehost-defensechemicalsdevelopedmulticellularanimalsregulatelimitmicrobialproliferationvarioustypesbiologicalphysicalstressThereforeisolatedrepresenttoolsapproachesregeneratingspeedleadmoleculesfutureresearchdrugsmayendogenousmediatorstreatnon-life-threateningepitheliallesionsThuspresentarticledraftedincorporatedifferentmethodpreparationroutesadministrationRecentAdvancementNovelHealingTherapiesUsingAntimicrobialDerivedHumansAmphibiansinjuries

Similar Articles

Cited By