Long-term trends in cycle threshold values: a comprehensive analysis of COVID-19 dynamics, viral load, and reproduction number in South Korea.

Jungeun Park, Sung-Il Cho, Sang-Gu Kang, Jee-Woun Kim, Sunkyung Jung, Sun-Hwa Lee, Kyou-Sup Han, Seung-Sik Hwang
Author Information
  1. Jungeun Park: Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
  2. Sung-Il Cho: Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
  3. Sang-Gu Kang: Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
  4. Jee-Woun Kim: Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
  5. Sunkyung Jung: Seegene Medical Foundation, Seoul, Republic of Korea.
  6. Sun-Hwa Lee: Seegene Medical Foundation, Seoul, Republic of Korea.
  7. Kyou-Sup Han: Seegene Medical Foundation, Seoul, Republic of Korea.
  8. Seung-Sik Hwang: Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.

Abstract

Background: With the emergence of COVID-19 cases, governments quickly responded with aggressive testing, contact tracing, isolation and quarantine measures. South Korea's testing strategy primarily relied on real-time reverse-transcriptase polymerase chain reaction (real-time RT-PCR), focusing on cycle threshold (Ct) values, indicative of viral load, to determine COVID-19 positivity. This study examined the long-term time series distribution of Ct values measured in the same laboratory using a nationally standardized testing type and sampling method in South Korea. It aimed to link Ct values, new COVID-19 cases, and the reproduction number (Rt), setting the stage for using Ct values effectively.
Methods: This study analyzed nationally collected 296,347 samples Ct values from February 2020 to January 2022 and examined their associations with the number of new cases and Rt trends. The data were categorized into four COVID-19 periods for in-depth analysis. Statistical methods included time series trend analysis, local regression for smoothing, linear regression for association analysis, and calculation of correlation coefficients.
Results: The median Ct values across four COVID-19 periods decreased gradually from 31.71 in the initial period to 21.27 in the fourth period, indicating higher viral load. The comparison of trends between Ct values and the number of new cases revealed that the decline in Ct values preceded the surge in new cases, particularly evident during the initial stages when new cases did not undergo a significant increase. Also, during variant emergence and vaccination rollout, marked shifts in Ct values were observed. Results from linear regression analysis revealed a significant negative relationship between Ct values and new cases (β = -0.33,  < 0.001,  = 0.67). This implies that as Ct values decrease, new case numbers increase.
Conclusion: This study demonstrates the potential of Ct values as early indicators for predicting confirmed COVID-19 cases during the initial stages of the epidemic and suggests their relevance in large-scale epidemic monitoring, even when case numbers are similar.

Keywords

References

  1. J Korean Med Sci. 2020 Nov 23;35(45):e396 [PMID: 33230987]
  2. JMIR Public Health Surveill. 2021 Jun 3;7(6):e28265 [PMID: 33999831]
  3. JMIR Public Health Surveill. 2022 Nov 8;8(11):e36424 [PMID: 36240022]
  4. Lancet Infect Dis. 2022 Feb;22(2):183-195 [PMID: 34756186]
  5. Microorganisms. 2021 Jun 10;9(6): [PMID: 34200850]
  6. Sci Rep. 2023 Apr 15;13(1):6156 [PMID: 37061534]
  7. Sci Rep. 2021 May 12;11(1):10124 [PMID: 33980931]
  8. Front Med (Lausanne). 2021 Nov 01;8:743988 [PMID: 34790677]
  9. PLoS One. 2021 Jan 13;16(1):e0244474 [PMID: 33439880]
  10. J Infect Dis. 2021 May 20;223(9):1528-1537 [PMID: 33585934]
  11. Science. 2021 Jul 16;373(6552): [PMID: 34083451]
  12. Front Med (Lausanne). 2021 Jan 27;8:608215 [PMID: 33585523]
  13. Lancet Infect Dis. 2021 May;21(5):629-636 [PMID: 33545090]
  14. Public Health. 2020 Aug;185:199-201 [PMID: 32653628]
  15. Clin Infect Dis. 2020 Nov 19;71(16):2252-2254 [PMID: 32435816]
  16. PLoS One. 2021 Nov 19;16(11):e0257979 [PMID: 34797838]
  17. Infect Dis Clin Pract (Baltim Md). 2021 Nov;29(6):e356-e360 [PMID: 34803344]
  18. J Med Virol. 2022 Jan;94(1):240-245 [PMID: 34460115]
  19. J Korean Med Sci. 2020 Aug 17;35(32):e297 [PMID: 32808513]
  20. J Infect Public Health. 2021 Sep;14(9):1201-1205 [PMID: 34416598]
  21. J Clin Virol. 2021 May;138:104791 [PMID: 33725648]
  22. Cell Rep Med. 2022 Mar 11;3(4):100583 [PMID: 35480627]
  23. Clin Microbiol Infect. 2021 Sep;27(9):1353.e1-1353.e5 [PMID: 34044153]
  24. Epidemics. 2022 Mar;38:100533 [PMID: 34896895]
  25. Korean J Intern Med. 2020 Jul;35(4):741-748 [PMID: 32668512]
  26. Elife. 2021 Jul 12;10: [PMID: 34250907]
  27. Microbes Infect. 2020 Nov - Dec;22(10):617-621 [PMID: 32911086]
  28. Nat Commun. 2022 Mar 3;13(1):1155 [PMID: 35241662]

MeSH Term

Humans
COVID-19
Republic of Korea
Viral Load
SARS-CoV-2
Basic Reproduction Number

Word Cloud

Created with Highcharts 10.0.0CtvaluesCOVID-19casesnewanalysistestingviralloadnumberSouthcyclethresholdstudytrendsregressioninitialemergencereal-timepolymerasechainreactionexaminedtimeseriesusingnationallyKoreareproductionRtfourperiodslinearperiodrevealedstagessignificantincreasecasenumbersepidemicBackground:governmentsquicklyrespondedaggressivecontacttracingisolationquarantinemeasuresKorea'sstrategyprimarilyreliedreverse-transcriptaseRT-PCRfocusingindicativedeterminepositivitylong-termdistributionmeasuredlaboratorystandardizedtypesamplingmethodaimedlinksettingstageeffectivelyMethods:analyzedcollected296347samplesFebruary2020January2022associationsdatacategorizedin-depthStatisticalmethodsincludedtrendlocalsmoothingassociationcalculationcorrelationcoefficientsResults:medianacrossdecreasedgradually31712127fourthindicatinghighercomparisondeclineprecededsurgeparticularlyevidentundergoAlsovariantvaccinationrolloutmarkedshiftsobservedResultsnegativerelationshipβ = -033< 0001 = 067impliesdecreaseConclusion:demonstratespotentialearlyindicatorspredictingconfirmedsuggestsrelevancelarge-scalemonitoringevensimilarLong-termvalues:comprehensivedynamicsvaluereversetranscription

Similar Articles

Cited By