Optimizing encoding strategies for 4D Flow MRI of mean and turbulent flow.

Pietro Dirix, Stefano Buoso, Sebastian Kozerke
Author Information
  1. Pietro Dirix: Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland. dirix@biomed.ee.ethz.ch.
  2. Stefano Buoso: Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
  3. Sebastian Kozerke: Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.

Abstract

For 4D Flow MRI of mean and turbulent flow a compromise between spatiotemporal undersampling and velocity encodings needs to be found. Assuming a fixed scan time budget, the impact of trading off spatiotemporal undersampling versus velocity encodings on quantification of velocity and turbulence for aortic 4D Flow MRI was investigated. For this purpose, patient-specific mean and turbulent aortic flow data were generated using computational fluid dynamics which were embedded into the patient-specific background image data to generate synthetic MRI data with corresponding ground truth flow. Cardiac and respiratory motion were included. Using the synthetic MRI data as input, 4D Flow MRI was subsequently simulated with undersampling along pseudo-spiral Golden angle Cartesian trajectories for various velocity encoding schemes. Data were reconstructed using a locally low rank approach to obtain mean and turbulent flow fields to be compared to ground truth. Results show that, for a 15-min scan, velocity magnitudes can be reconstructed with good accuracy relatively independent of the velocity encoding scheme ( , good accuracy ( ) and with peak velocity errors limited to 10%. Turbulence maps on the other hand suffer from both lower reconstruction quality ( ) and larger sensitivity to undersampling, motion and velocity encoding strengths ( when compared to velocity maps. The best compromise to measure unwrapped velocity maps and turbulent kinetic energy given a fixed 15-min scan budget was found to be a 7-point multi- acquisition with a low tuned for best sensitivity to the range of expected intra-voxel standard deviations and a high larger than the expected peak velocity.

Keywords

References

  1. Sci Rep. 2021 May 13;11(1):10240 [PMID: 33986368]
  2. Magn Reson Imaging. 2020 Oct;72:49-60 [PMID: 32619720]
  3. Radiol Cardiothorac Imaging. 2020 Nov 12;2(6):e200219 [PMID: 33385164]
  4. Magn Reson Med. 2016 May;75(5):1909-19 [PMID: 26059014]
  5. Magn Reson Med. 2021 Feb;85(2):721-733 [PMID: 32754969]
  6. Circ Cardiovasc Imaging. 2017 Jun;10(6): [PMID: 28611119]
  7. Med Image Anal. 2020 Feb;60:101627 [PMID: 31865280]
  8. Magn Reson Med. 2015 May;73(5):1864-71 [PMID: 24934930]
  9. J Cardiovasc Magn Reson. 2019 Jul 22;21(1):42 [PMID: 31331353]
  10. Int J Numer Method Biomed Eng. 2018 Nov;34(11):e3134 [PMID: 30062843]
  11. Magn Reson Med. 2021 Apr;85(4):2174-2187 [PMID: 33107141]
  12. Magn Reson Med. 2013 May;69(5):1337-45 [PMID: 22700280]
  13. IEEE Trans Biomed Eng. 2022 Dec;69(12):3812-3824 [PMID: 35675233]
  14. Front Bioeng Biotechnol. 2021 Dec 07;9:774954 [PMID: 34950643]
  15. Sci Rep. 2022 Sep 26;12(1):16004 [PMID: 36163357]
  16. JACC Cardiovasc Imaging. 2019 Feb;12(2):252-266 [PMID: 30732721]
  17. IEEE Trans Med Imaging. 2017 Feb;36(2):385-395 [PMID: 27654322]
  18. Quant Imaging Med Surg. 2021 Sep;11(9):4193-4210 [PMID: 34476199]
  19. Eur J Radiol. 2021 Apr;137:109570 [PMID: 33596498]
  20. J Magn Reson Imaging. 2016 Apr;43(4):833-42 [PMID: 26417641]
  21. Med Image Anal. 2023 Aug;88:102831 [PMID: 37244143]
  22. J Cardiovasc Magn Reson. 2020 Jan 20;22(1):7 [PMID: 31959203]
  23. J Magn Reson Imaging. 2017 Jul;46(1):102-114 [PMID: 28152256]
  24. Radiology. 2014 Feb;270(2):566-73 [PMID: 24471394]
  25. J Magn Reson Imaging. 2012 Nov;36(5):1015-36 [PMID: 23090914]
  26. Sci Rep. 2016 Dec 22;6:39773 [PMID: 28004789]
  27. Magn Reson Med. 2010 Oct;64(4):1039-46 [PMID: 20574963]
  28. Radiology. 2015 Apr;275(1):245-54 [PMID: 25325326]
  29. J Am Coll Cardiol. 2012 Nov 6;60(19):1854-63 [PMID: 23062541]
  30. Magn Reson Med. 2019 Jun;81(6):3675-3690 [PMID: 30803006]
  31. Magn Reson Med. 2019 Feb;81(2):893-906 [PMID: 30252155]
  32. Magn Reson Med. 2020 Feb;83(2):635-644 [PMID: 31464355]
  33. J Magn Reson Imaging. 2016 Feb;43(2):352-63 [PMID: 26130421]
  34. JACC Cardiovasc Imaging. 2013 Jan;6(1):64-71 [PMID: 23328563]
  35. Magn Reson Med. 2016 Jan;75(1):115-25 [PMID: 25684112]
  36. Magn Reson Med. 2022 Dec;88(6):2432-2446 [PMID: 36005271]
  37. Magn Reson Med. 2017 Nov;78(5):1877-1882 [PMID: 28074541]
  38. J Magn Reson Imaging. 2018 Oct;48(4):1147-1158 [PMID: 29638024]
  39. J Magn Reson Imaging. 2017 Nov;46(5):1516-1525 [PMID: 28225577]
  40. Sci Rep. 2019 Dec 11;9(1):18794 [PMID: 31827204]
  41. J Biomech. 2019 Sep 20;94:13-21 [PMID: 31326119]
  42. NMR Biomed. 2020 Nov;33(11):e4394 [PMID: 32815236]
  43. J Am Soc Echocardiogr. 2017 Apr;30(4):372-392 [PMID: 28385280]
  44. J Magn Reson Imaging. 1997 Mar-Apr;7(2):339-46 [PMID: 9090588]
  45. J Thorac Dis. 2018 Sep;10(9):5584-5594 [PMID: 30416809]
  46. Magn Reson Imaging. 2016 Jul;34(6):715-723 [PMID: 26968139]
  47. J Magn Reson Imaging. 2016 Jun;43(6):1355-68 [PMID: 26646061]
  48. IEEE Trans Image Process. 2004 Apr;13(4):600-12 [PMID: 15376593]
  49. IEEE Trans Med Imaging. 2012 Mar;31(3):626-36 [PMID: 22049364]
  50. Magn Reson Imaging. 2014 Oct;32(8):1012-20 [PMID: 24846341]
  51. Magn Reson Med. 2020 Oct;84(4):1806-1816 [PMID: 32212352]
  52. J Cardiovasc Magn Reson. 2020 Sep 17;22(1):68 [PMID: 32938483]
  53. J Cardiovasc Magn Reson. 2023 Jul 20;25(1):40 [PMID: 37474977]
  54. Magn Reson Med. 2017 Oct;78(4):1330-1341 [PMID: 27787911]
  55. Heart Vessels. 2017 Aug;32(8):1032-1044 [PMID: 28444501]
  56. PLoS One. 2021 Mar 26;16(3):e0248816 [PMID: 33770130]
  57. Sci Rep. 2017 Apr 20;7:46618 [PMID: 28425452]
  58. J Biomech. 2017 May 3;56:89-96 [PMID: 28342532]

Grants

  1. 325230_197702/Swiss National Science Foundation

Word Cloud

Created with Highcharts 10.0.0velocityMRIflow4DFlowturbulentmeanundersamplingdataencodingscanmapscompromisespatiotemporalencodingsfoundfixedbudgetaorticpatient-specificusingfluiddynamicssyntheticgroundtruthmotionreconstructedlowcompared15-mingoodaccuracypeaklargersensitivitybestexpectedneedsAssumingtimeimpacttradingversusquantificationturbulenceinvestigatedpurposegeneratedcomputationalembeddedbackgroundimagegeneratecorrespondingCardiacrespiratoryincludedUsinginputsubsequentlysimulatedalongpseudo-spiralGoldenangleCartesiantrajectoriesvariousschemesDatalocallyrankapproachobtainfieldsResultsshowmagnitudescanrelativelyindependentschemeerrorslimited10%Turbulencehandsufferlowerreconstructionqualitystrengthsmeasureunwrappedkineticenergygiven7-pointmulti-acquisitiontunedrangeintra-voxelstandarddeviationshighOptimizingstrategiesAorticstenosisComputationalImagesynthesisTurbulent

Similar Articles

Cited By