Antimicrobial resistance patterns in in a One Health perspective.

Marte Glambek, Steinar Skrede, Audun Sivertsen, Bård Reiakvam Kittang, Alba Kaci, Christine Monceyron Jonassen, Hannah Joan Jørgensen, Norwegian Study Group on Streptococcus dysgalactiae, Oddvar Oppegaard
Author Information
  1. Marte Glambek: Department of Medicine, Haukeland University Hospital, Bergen, Norway.
  2. Steinar Skrede: Department of Medicine, Haukeland University Hospital, Bergen, Norway.
  3. Audun Sivertsen: Department of Microbiology, Haukeland University Hospital, Bergen, Norway.
  4. Bård Reiakvam Kittang: Department of Clinical Medicine 2, Department of Clinical Science, University of Bergen, Bergen, Norway.
  5. Alba Kaci: Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway.
  6. Christine Monceyron Jonassen: Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway.
  7. Hannah Joan Jørgensen: Norwegian Veterinary Institute, Ås, Norway.
  8. Oddvar Oppegaard: Department of Medicine, Haukeland University Hospital, Bergen, Norway.

Abstract

Background: (SD) is an important pathogen in humans as well as in a broad range of animal species. Escalating rates of antibiotic resistance in SD has been reported in both human and veterinary clinical practice, but the dissemination of resistance determinants has so far never been examined in a One Health Perspective. We wanted to explore the occurrence of zoonotic transmission of SD and the potential for exchange of resistance traits between SD from different host populations.
Methods: We compared whole genome sequences and phenotypical antimicrobial susceptibility of 407 SD isolates, comprising all isolates obtained from human bloodstream infections in 2018 ( = 274) and available isolates associated with animal infections from the years 2018 and 2019 ( = 133) in Norway.
Results: Antimicrobial resistance genes were detected in 70 (26%), 9 (25%) and 2 (2%) of the isolates derived from humans, companion animals and livestock, respectively. Notably, distinct host associated genotypic resistomes were observed. The (A) gene was the dominant cause of erythromycin resistance in human associated isolates, whereas only (B) and (C) were identified in SD isolates from animals. Moreover, the tetracycline resistance gene (O) was located on different mobile genetic elements in SD from humans and animals. Evidence of niche specialization was also evident in the phylogenetic analysis, as the isolates could be almost perfectly delineated in accordance with host species. Nevertheless, near identical mobile genetic elements were observed in four isolates from different host species including one human, implying potential transmission of antibiotic resistance between different environments.
Conclusion: We found a phylogenetic delineation of SD strains in line with host adapted populations and niche specialization. Direct transmission of strains or genetic elements carrying resistance genes between SD from different ecological niches appears to be rare in our geographical region.

Keywords

References

  1. Sci Rep. 2017 Aug 8;7(1):7589 [PMID: 28790435]
  2. Microb Genom. 2022 Jan;8(1): [PMID: 35072601]
  3. Zoonoses Public Health. 2014 Mar;61(2):145-8 [PMID: 23745768]
  4. Front Microbiol. 2022 Jul 19;13:952110 [PMID: 35928143]
  5. Eur J Clin Microbiol Infect Dis. 2021 May;40(5):1013-1021 [PMID: 33392783]
  6. Front Vet Sci. 2016 Sep 15;3:79 [PMID: 27695696]
  7. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  8. Vet Microbiol. 2021 Nov;262:109221 [PMID: 34482054]
  9. Antimicrob Agents Chemother. 2016 Jan 04;60(3):1736-46 [PMID: 26729505]
  10. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  11. Clin Infect Dis. 2009 Sep 1;49(5):766-72 [PMID: 19635028]
  12. Infect Drug Resist. 2021 Aug 31;14:3519-3530 [PMID: 34511943]
  13. Sci Rep. 2016 Aug 17;6:31736 [PMID: 27530432]
  14. Zoonoses Public Health. 2009 May;56(4):206-8 [PMID: 19309483]
  15. FEMS Microbiol Lett. 2010 Jan;302(1):32-8 [PMID: 19895643]
  16. Front Microbiol. 2023 Apr 17;14:1171913 [PMID: 37485526]
  17. Emerg Infect Dis. 2023 Mar;29(3):528-539 [PMID: 36823027]
  18. N Z Vet J. 2014 Mar;62(2):68-76 [PMID: 24215609]
  19. N Z Vet J. 2015 Sep;63(5):265-71 [PMID: 25695401]
  20. Trends Microbiol. 2020 Jun;28(6):465-477 [PMID: 31948727]
  21. PLoS One. 2018 Oct 23;13(10):e0206289 [PMID: 30352091]
  22. Emerg Infect Dis. 2023 Feb;29(2):260-267 [PMID: 36692331]
  23. Vet Microbiol. 2020 Jun;245:108644 [PMID: 32456822]
  24. Animals (Basel). 2021 Jul 16;11(7): [PMID: 34359241]
  25. Diagn Microbiol Infect Dis. 2016 Oct;86(2):178-80 [PMID: 27539863]
  26. J Dairy Sci. 2018 Apr;101(4):3344-3355 [PMID: 29397161]
  27. Eur J Clin Microbiol Infect Dis. 2019 Dec;38(12):2253-2258 [PMID: 31392445]
  28. Rev Argent Microbiol. 2016 Oct - Dec;48(4):279-289 [PMID: 28341023]
  29. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  30. Sci Rep. 2021 Aug 30;11(1):17350 [PMID: 34462475]
  31. Microbiol Spectr. 2018 Mar;6(2): [PMID: 29600770]
  32. Vet Microbiol. 2024 Mar;290:109994 [PMID: 38281323]
  33. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  34. Jpn J Infect Dis. 2020 Jul 22;73(4):308-315 [PMID: 32009057]
  35. Emerg Infect Dis. 2017 Jul;23(7):1079-1088 [PMID: 28628457]
  36. Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1231-43 [PMID: 9828425]
  37. Curr Microbiol. 2016 Nov;73(5):684-688 [PMID: 27502064]
  38. PLoS One. 2022 Feb 11;17(2):e0261999 [PMID: 35148318]
  39. Eur J Clin Microbiol Infect Dis. 2023 Jul;42(7):819-825 [PMID: 37119347]

Word Cloud

Created with Highcharts 10.0.0resistanceSDisolateshumandifferenthostgenetichumansanimalspeciesantibioticOneHealthtransmissionassociatedanimalselementspotentialpopulationswholeinfections2018NorwayAntimicrobialgenesobservedgenemobilenichespecializationphylogeneticstrainsBackground:importantpathogenwellbroadrangeEscalatingratesreportedveterinaryclinicalpracticedisseminationdeterminantsfarneverexaminedPerspectivewantedexploreoccurrencezoonoticexchangetraitsMethods:comparedgenomesequencesphenotypicalantimicrobialsusceptibility407comprisingobtainedbloodstream = 274availableyears2019 = 133Results:detected7026%925%22%derivedcompanionlivestockrespectivelyNotablydistinctgenotypicresistomesdominantcauseerythromycinwhereasBCidentifiedMoreovertetracyclineOlocatedEvidencealsoevidentanalysisalmostperfectlydelineatedaccordanceNeverthelessnearidenticalfourincludingoneimplyingenvironmentsConclusion:founddelineationlineadaptedDirectcarryingecologicalnichesappearsraregeographicalregionpatternsperspectiveStreptococcusdysgalactiaehorizontaltransfergenomicsequencing

Similar Articles

Cited By