Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages.

Aritra Nath Chattopadhyay, Mingdi Jiang, Jessa Marie V Makabenta, Jungmi Park, Yingying Geng, Vincent Rotello
Author Information
  1. Aritra Nath Chattopadhyay: Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
  2. Mingdi Jiang: Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. ORCID
  3. Jessa Marie V Makabenta: Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. ORCID
  4. Jungmi Park: Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. ORCID
  5. Yingying Geng: Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
  6. Vincent Rotello: Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. ORCID

Abstract

Opportunistic bacterial pathogens can evade the immune response by residing and reproducing within host immune cells, including macrophages. These intracellular infections provide reservoirs for pathogens that enhance the progression of infections and inhibit therapeutic strategies. Current sensing strategies for intracellular infections generally use immunosensing of specific biomarkers on the cell surface or polymerase chain reaction (PCR) of the corresponding nucleic acids, making detection difficult, time-consuming, and challenging to generalize. Intracellular infections can induce changes in macrophage glycosylation, providing a potential strategy for signature-based detection of intracellular infections. We report here the detection of bacterial infection in macrophages using a boronic acid (BA)-based pH-responsive polymer sensor array engineered to distinguish mammalian cell phenotypes by their cell surface glycosylation signatures. The sensor was able to discriminate between different infecting bacteria in minutes, providing a promising tool for diagnostic and screening applications.

Keywords

References

  1. Chem Sci. 2024 Jan 9;15(7):2486-2494 [PMID: 38362405]
  2. Cell. 2019 Apr 18;177(3):683-696.e18 [PMID: 30929902]
  3. Org Biomol Chem. 2015 Sep 21;13(35):9231-5 [PMID: 26223489]
  4. Org Biomol Chem. 2017 Nov 29;15(46):9866-9874 [PMID: 29139514]
  5. Biol Proced Online. 2017 Jul 20;19:8 [PMID: 28814944]
  6. Small. 2020 Sep;16(36):e2002084 [PMID: 32347000]
  7. ACS Chem Biol. 2020 Jan 17;15(1):83-92 [PMID: 31775004]
  8. Cell Death Differ. 2019 Mar;26(4):715-727 [PMID: 30737475]
  9. Intensive Care Med. 2016 Sep;42(9):1374-86 [PMID: 27276986]
  10. Curr Opin Microbiol. 2020 Dec;58:15-23 [PMID: 32599492]
  11. Sci Rep. 2021 May 17;11(1):10399 [PMID: 34001998]
  12. ACS Appl Mater Interfaces. 2019 Feb 20;11(7):6751-6758 [PMID: 30689344]
  13. Curr Osteoporos Rep. 2019 Dec;17(6):395-404 [PMID: 31721069]
  14. PLoS One. 2019 Jul 25;14(7):e0219480 [PMID: 31344060]
  15. ACS Sens. 2023 Jan 27;8(1):133-140 [PMID: 36630575]
  16. Org Lett. 2013 Jul 5;15(13):3456-9 [PMID: 23796050]
  17. Cell Mol Life Sci. 2015 Nov;72(21):4111-26 [PMID: 26210152]
  18. Nat Commun. 2019 Jan 14;10(1):197 [PMID: 30643129]
  19. Biosensors (Basel). 2023 Jul 04;13(7): [PMID: 37504104]
  20. Anal Chem. 2023 Aug 15;95(32):12177-12183 [PMID: 37535805]
  21. Front Cell Infect Microbiol. 2016 May 17;6:52 [PMID: 27242970]
  22. Vet Sci. 2019 Sep 03;6(3): [PMID: 31484383]
  23. APMIS. 2009 May;117(5-6):323-37 [PMID: 19400860]
  24. Anal Chem. 2024 Jan 30;96(4):1795-1802 [PMID: 38241199]
  25. J Chromatogr A. 2014 Jun 13;1346:88-96 [PMID: 24800968]
  26. Chem Sci. 2020 Jul 22;11(31):8231-8239 [PMID: 34123093]
  27. Curr Opin Chem Biol. 2010 Dec;14(6):743-50 [PMID: 20685156]
  28. Chem Soc Rev. 2024 Feb 19;53(4):1870-1891 [PMID: 38223993]
  29. Expert Opin Med Diagn. 2013 Jan;7(1):37-51 [PMID: 23335946]
  30. Chemistry. 2024 Feb 26;30(12):e202303819 [PMID: 37997515]
  31. J Control Release. 2023 Oct;362:513-523 [PMID: 37666301]
  32. Front Biosci (Landmark Ed). 2016 Jun 01;21(6):1260-77 [PMID: 27100505]
  33. Immunol Cell Biol. 2018 Mar;96(3):246-256 [PMID: 29363185]
  34. Chem Rev. 2019 Jan 9;119(1):231-292 [PMID: 30207700]
  35. Microbiol Spectr. 2019 Mar;7(2): [PMID: 30848231]
  36. Nat Nanotechnol. 2017 Dec;12(12):1161-1168 [PMID: 29035400]
  37. Chem Soc Rev. 2013 Nov 21;42(22):8649-82 [PMID: 24091381]
  38. Infect Immun. 2015 Oct 26;84(1):241-53 [PMID: 26502911]
  39. Tuberculosis (Edinb). 2017 May;104:95-106 [PMID: 28454656]
  40. Anal Sens. 2023 May;3(3): [PMID: 37250385]
  41. Virulence. 2020 Dec;11(1):862-876 [PMID: 32697923]
  42. Cells. 2020 Jan 22;9(2): [PMID: 31979120]
  43. Chem Sci. 2022 Oct 24;13(43):12899-12905 [PMID: 36519060]
  44. mBio. 2016 Apr 12;7(2):e00104-16 [PMID: 27073089]
  45. Int J Biol Macromol. 2024 Aug;275(Pt 2):133738 [PMID: 38992536]
  46. Anal Chem. 2020 Aug 18;92(16):11462-11468 [PMID: 32693581]
  47. Immunol Rev. 2015 Mar;264(1):182-203 [PMID: 25703560]
  48. Br J Pharmacol. 2017 Jul;174(14):2225-2236 [PMID: 27925153]
  49. ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11202-11208 [PMID: 30830743]
  50. Int J Mol Sci. 2022 Mar 27;23(7): [PMID: 35409032]
  51. J Am Chem Soc. 2018 May 16;140(19):6176-6182 [PMID: 29709168]
  52. Sci Rep. 2021 Feb 26;11(1):4763 [PMID: 33637779]
  53. J Am Chem Soc. 2022 Mar 9;144(9):4017-4025 [PMID: 35195411]
  54. J Hazard Mater. 2024 Mar 15;466:133590 [PMID: 38280324]
  55. Viruses. 2021 Jan 08;13(1): [PMID: 33435561]
  56. Angew Chem Int Ed Engl. 2017 Nov 27;56(48):15246-15251 [PMID: 28960676]
  57. Chem Soc Rev. 2014 Jan 7;43(1):70-84 [PMID: 23995750]
  58. ACS Sens. 2020 Aug 28;5(8):2422-2429 [PMID: 32686397]
  59. FEBS J. 2021 Aug;288(16):4746-4772 [PMID: 33752265]
  60. Biosensors (Basel). 2023 Aug 10;13(8): [PMID: 37622889]
  61. Anal Chem. 2022 Jul 26;94(29):10462-10469 [PMID: 35834409]
  62. PLoS Pathog. 2015 Aug 06;11(8):e1005083 [PMID: 26248231]
  63. Cell Microbiol. 2000 Dec;2(6):505-19 [PMID: 11207604]
  64. Infect Drug Resist. 2021 Feb 19;14:651-660 [PMID: 33642869]
  65. Nat Immunol. 2006 Mar;7(3):318-25 [PMID: 16444259]
  66. Chem Commun (Camb). 2022 Feb 24;58(17):2890-2893 [PMID: 35141736]
  67. Immunity. 2014 Nov 20;41(5):685-93 [PMID: 25517611]
  68. Langmuir. 2024 Jan 30;40(4):2369-2376 [PMID: 38230676]
  69. Sci Rep. 2020 Sep 2;10(1):14417 [PMID: 32879324]
  70. Chem Commun (Camb). 2016 Feb 28;52(17):3456-69 [PMID: 26728041]
  71. Front Immunol. 2021 Jan 19;11:620339 [PMID: 33542723]
  72. Nano Lett. 2018 Oct 10;18(10):6229-6236 [PMID: 30153415]
  73. Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 15;311:124038 [PMID: 38364516]
  74. Front Immunol. 2017 Nov 06;8:1483 [PMID: 29163544]
  75. Vaccine. 2004 May 7;22(15-16):1873-85 [PMID: 15121298]
  76. Chem Rev. 2016 Feb 10;116(3):1375-97 [PMID: 26367140]

Grants

  1. R01 AI134770/NIAID NIH HHS
  2. R01 DK121351/NIDDK NIH HHS
  3. DK121351 and AI134770/NIH HHS

MeSH Term

Macrophages
Biosensing Techniques
Bacterial Infections
Humans
Animals
Boronic Acids
Hydrogen-Ion Concentration
Glycosylation

Chemicals

Boronic Acids

Word Cloud

Created with Highcharts 10.0.0infectionsintracellularcellsurfacedetectioninfectionsensorbacterialpathogenscanimmunemacrophagesstrategiessensingIntracellularchangesmacrophageglycosylationprovidingarrayOpportunisticevaderesponseresidingreproducingwithinhostcellsincludingprovidereservoirsenhanceprogressioninhibittherapeuticCurrentgenerallyuseimmunosensingspecificbiomarkerspolymerasechainreactionPCRcorrespondingnucleicacidsmakingdifficulttime-consumingchallenginggeneralizeinducepotentialstrategysignature-basedreportusingboronicacidBA-basedpH-responsivepolymerengineereddistinguishmammalianphenotypessignaturesablediscriminatedifferentinfectingbacteriaminutespromisingtooldiagnosticscreeningapplicationsNanosensor-EnabledDetectionIdentificationBacterialInfectionsMacrophagesphenotypicchemicalnosesyntheticpolymeric

Similar Articles

Cited By