Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics.

Nargish Parvin, Vineet Kumar, Tapas Kumar Mandal, Sang Woo Joo
Author Information
  1. Nargish Parvin: School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea. ORCID
  2. Vineet Kumar: School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea. ORCID
  3. Tapas Kumar Mandal: School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea. ORCID
  4. Sang Woo Joo: School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

Abstract

This review explores the latest advancements in nanoporous materials and their applications in biomedical imaging and diagnostics. Nanoporous materials possess unique structural features, including high surface area, tunable pore size, and versatile surface chemistry, making them highly promising platforms for a range of biomedical applications. This review begins by providing an overview of the various types of nanoporous materials, including mesoporous silica nanoparticles, metal-organic frameworks, carbon-based materials, and nanoporous gold. The synthesis method for each material, their current research trends, and prospects are discussed in detail. Furthermore, this review delves into the functionalization and surface modification techniques employed to tailor nanoporous materials for specific biomedical imaging applications. This section covers chemical functionalization, bioconjugation strategies, and surface coating and encapsulation methods. Additionally, this review examines the diverse biomedical imaging techniques enabled by nanoporous materials, such as fluorescence imaging, magnetic resonance imaging (MRI), computed tomography (CT) imaging, ultrasound imaging, and multimodal imaging. The mechanisms underlying these imaging techniques, their diagnostic applications, and their efficacy in clinical settings are thoroughly explored. Through an extensive analysis of recent research findings and emerging trends, this review underscores the transformative potential of nanoporous materials in advancing biomedical imaging and diagnostics. The integration of interdisciplinary approaches, innovative synthesis techniques, and functionalization strategies offers promising avenues for the development of next-generation imaging agents and diagnostic tools with enhanced sensitivity, specificity, and biocompatibility.

Keywords

References

  1. ACS Appl Bio Mater. 2022 Jan 17;5(1):190-204 [PMID: 35014809]
  2. Int J Nanomedicine. 2021 Nov 06;16:7463-7478 [PMID: 34785894]
  3. Langmuir. 2020 Oct 6;36(39):11442-11449 [PMID: 32880180]
  4. Mater Sci Eng C Mater Biol Appl. 2019 May;98:358-368 [PMID: 30813037]
  5. IEEE Trans Nanobioscience. 2023 Apr;22(2):447-452 [PMID: 35763470]
  6. Hum Gene Ther Methods. 2017 Aug;28(4):163-176 [PMID: 28817344]
  7. Colloids Surf B Biointerfaces. 2022 Mar;211:112330 [PMID: 35032851]
  8. ACS Nano. 2020 Feb 25;14(2):2053-2062 [PMID: 31999433]
  9. Curr Med Chem. 2019;26(31):5745-5763 [PMID: 29714137]
  10. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Nov;11(6):e1570 [PMID: 31257722]
  11. J Mater Chem B. 2021 Oct 6;9(38):7909-7926 [PMID: 34611678]
  12. J Mater Chem B. 2021 Apr 28;9(16):3423-3449 [PMID: 33909734]
  13. Bioconjug Chem. 2020 May 20;31(5):1234-1246 [PMID: 32302478]
  14. Nanomaterials (Basel). 2021 Dec 10;11(12): [PMID: 34947695]
  15. Materials (Basel). 2020 Jun 05;13(11): [PMID: 32517085]
  16. Sensors (Basel). 2017 Jun 28;17(7): [PMID: 28657586]
  17. Cancer Biol Med. 2016 Sep;13(3):339-348 [PMID: 27807501]
  18. Biomed Phys Eng Express. 2020 Apr 15;6(3):035025 [PMID: 33438670]
  19. Nano Today. 2021 Jun;38: [PMID: 33897805]
  20. Sens Actuators A Phys. 2021 Dec 1;332(Pt 2): [PMID: 34937992]
  21. Micromachines (Basel). 2023 Sep 18;14(9): [PMID: 37763949]
  22. Nat Commun. 2016 Sep 30;7:12967 [PMID: 27686999]
  23. J Am Chem Soc. 2015 Feb 18;137(6):2140-54 [PMID: 25474531]
  24. Part Fibre Toxicol. 2020 Jun 8;17(1):23 [PMID: 32513195]
  25. J Anal Methods Chem. 2019 Oct 23;2019:2179718 [PMID: 31886019]
  26. Angew Chem Int Ed Engl. 2017 Jul 24;56(31):9141-9145 [PMID: 28631401]
  27. ACS Appl Mater Interfaces. 2023 May 31;15(21):25248-25274 [PMID: 35715224]
  28. J Nanobiotechnology. 2022 Oct 15;20(1):450 [PMID: 36243718]
  29. Int J Pharm. 2024 Jul 20;660:124340 [PMID: 38878838]
  30. J Am Chem Soc. 2021 Apr 28;143(16):6025-6036 [PMID: 33857372]
  31. Curr Opin Colloid Interface Sci. 2021 Aug;54: [PMID: 34393610]
  32. Nat Mater. 2010 Feb;9(2):172-8 [PMID: 20010827]
  33. Sens Actuators A Phys. 2021 Dec 1;332(Pt 2): [PMID: 34937991]
  34. Bioconjug Chem. 2022 Jan 19;33(1):4-23 [PMID: 34894666]
  35. Curr Opin Biomed Eng. 2021 Mar;17:100262 [PMID: 33786405]
  36. Front Bioeng Biotechnol. 2021 Nov 16;9:749381 [PMID: 34869261]
  37. J Am Chem Soc. 2007 Jul 18;129(28):8845-9 [PMID: 17589996]
  38. Talanta. 2020 Mar 1;209:120552 [PMID: 31892096]
  39. J Nanobiotechnology. 2022 Jun 14;20(1):277 [PMID: 35701847]
  40. Nat Med. 2023 Jun;29(6):1298-1301 [PMID: 37280276]
  41. ACS Appl Mater Interfaces. 2018 May 2;10(17):15174-15182 [PMID: 29658699]
  42. J Mater Chem B. 2024 Jun 5;12(22):5272-5298 [PMID: 38739040]
  43. Chemosphere. 2022 Nov;307(Pt 4):135999 [PMID: 35985388]
  44. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 Jul;12(4):e1618 [PMID: 32027784]
  45. Chem Soc Rev. 2021 Apr 7;50(7):4484-4513 [PMID: 33595006]
  46. ACS Nano. 2021 Feb 23;15(2):2099-2142 [PMID: 33497197]
  47. J Toxicol. 2021 Jul 30;2021:9954443 [PMID: 34422042]
  48. Front Bioeng Biotechnol. 2022 Dec 16;10:1075670 [PMID: 36588951]
  49. Acc Chem Res. 2013 Jan 15;46(1):171-80 [PMID: 23092181]
  50. J Colloid Interface Sci. 2021 Jul;593:424-433 [PMID: 33752152]
  51. Sci Technol Adv Mater. 2022 Jul 20;23(1):225-274 [PMID: 35875329]
  52. Sci Rep. 2020 Sep 24;10(1):15627 [PMID: 32973267]
  53. Pharmaceutics. 2022 Jun 29;14(7): [PMID: 35890274]
  54. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jan;14(1):e1740 [PMID: 34296533]
  55. Anal Chem. 2021 Oct 26;93(42):14307-14316 [PMID: 34641676]
  56. ACS Appl Bio Mater. 2020 May 18;3(5):2805-2815 [PMID: 35025410]
  57. Adv Healthc Mater. 2023 Jun;12(16):e2201884 [PMID: 36529877]
  58. Bioengineered. 2021 Dec;12(1):6343-6353 [PMID: 34506231]
  59. Biomed Pharmacother. 2023 Sep;165:115070 [PMID: 37390711]
  60. Nanotechnology. 2020 Aug 14;31(33):335103 [PMID: 32369797]
  61. Nanoscale. 2024 May 23;16(20):9899-9910 [PMID: 38686453]
  62. Int J Mol Sci. 2022 Oct 01;23(19): [PMID: 36232904]
  63. Phys Chem Chem Phys. 2023 Aug 23;25(33):21787-21801 [PMID: 37577965]
  64. ACS Appl Mater Interfaces. 2024 Mar 20;16(11):14296-14307 [PMID: 38452344]
  65. Semin Cancer Biol. 2021 Feb;69:365-375 [PMID: 31442571]
  66. Chemosphere. 2022 Sep;303(Pt 3):135205 [PMID: 35667502]
  67. Biomater Sci. 2021 May 18;9(10):3603-3620 [PMID: 34008597]
  68. Adv Mater. 2012 Mar 22;24(12):1504-34 [PMID: 22378538]
  69. J Hazard Mater. 2020 Oct 5;397:122765 [PMID: 32438242]
  70. Biosens Bioelectron. 2020 Nov 6;173:112787 [PMID: 33190049]
  71. Adv Mater. 2013 Jun 18;25(23):3144-76 [PMID: 23681931]
  72. Int J Nanomedicine. 2021 Mar 01;16:1601-1616 [PMID: 33688181]
  73. Nano Lett. 2010 Sep 8;10(9):3318-23 [PMID: 20684528]
  74. Philos Trans A Math Phys Eng Sci. 2017 Nov 28;375(2107): [PMID: 29038384]
  75. ACS Appl Mater Interfaces. 2022 Nov 16;14(45):50445-50462 [PMID: 36239348]
  76. Nano Lett. 2020 May 13;20(5):4014-4021 [PMID: 32298126]
  77. Nat Nanotechnol. 2011 Apr;6(4):232-6 [PMID: 21336267]
  78. Chem Commun (Camb). 2010 Aug 28;46(32):5832-49 [PMID: 20623072]
  79. Adv Mater. 2017 Mar;29(9): [PMID: 28084658]

Word Cloud

Created with Highcharts 10.0.0imagingmaterialsnanoporousbiomedicalreviewtechniquesapplicationssurfacefunctionalizationdiagnosticsNanoporousincludingpromisingsynthesisresearchtrendsstrategiesmultimodaldiagnosticexploreslatestadvancementspossessuniquestructuralfeatureshighareatunableporesizeversatilechemistrymakinghighlyplatformsrangebeginsprovidingoverviewvarioustypesmesoporoussilicananoparticlesmetal-organicframeworkscarbon-basedgoldmethodmaterialcurrentprospectsdiscusseddetailFurthermoredelvesmodificationemployedtailorspecificsectioncoverschemicalbioconjugationcoatingencapsulationmethodsAdditionallyexaminesdiverseenabledfluorescencemagneticresonanceMRIcomputedtomographyCTultrasoundmechanismsunderlyingefficacyclinicalsettingsthoroughlyexploredextensiveanalysisrecentfindingsemergingunderscorestransformativepotentialadvancingintegrationinterdisciplinaryapproachesinnovativeoffersavenuesdevelopmentnext-generationagentstoolsenhancedsensitivityspecificitybiocompatibilityAdvancementsMaterialsBiomedicalImagingDiagnostics

Similar Articles

Cited By