Production of Fucoxanthin from Microalgae of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches.

Fatouma Mohamed Abdoul-Latif, Ayoub Ainane, Laila Achenani, Ali Merito Ali, Houda Mohamed, Ahmad Ali, Pannaga Pavan Jutur, Tarik Ainane
Author Information
  1. Fatouma Mohamed Abdoul-Latif: Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti. ORCID
  2. Ayoub Ainane: Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco. ORCID
  3. Laila Achenani: Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco.
  4. Ali Merito Ali: Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti.
  5. Houda Mohamed: Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti.
  6. Ahmad Ali: University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India. ORCID
  7. Pannaga Pavan Jutur: Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. ORCID
  8. Tarik Ainane: Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco. ORCID

Abstract

Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and fucoxanthin production from , isolated from the coast of Tadjoura (Djibouti), by testing various culture media. The antioxidant potential of the cultures was evaluated based on the concentrations of fucoxanthin, carotenoids, and total phenols. Different nutrient formulations were tested to determine the optimal combination for a maximum biomass yield. Using the statistical methodology of principal component analysis, Walne and Guillard F/2 media were identified as the most promising, reaching a maximum fucoxanthin yield of 7.8 mg/g. Multiple regression models showed a strong correlation between antioxidant activity and the concentration of fucoxanthin produced. A thorough study of the optimization of growth conditions, using a design of experiments, revealed that air flow rate and CO flow rate were the most influential factors on fucoxanthin production, reaching a value of 13.4 mg/g. Finally, to validate the antioxidant potential of fucoxanthin, an in silico analysis based on molecular docking was performed, showing that fucoxanthin interacts with antioxidant proteins (3FS1, 3L2C, and 8BBK). This research not only confirmed the positive results of cultivation in terms of antioxidant activity, but also provided essential information for the optimization of fucoxanthin production, opening up promising prospects for industrial applications and future research.

Keywords

References

  1. Bioresour Technol. 2020 Nov;315:123894 [PMID: 32736321]
  2. Bioresour Technol. 2023 Nov;387:129688 [PMID: 37595805]
  3. Molecules. 2023 Feb 02;28(3): [PMID: 36771108]
  4. Molecules. 2023 Mar 03;28(5): [PMID: 36903607]
  5. Cell Mol Life Sci. 2023 Mar 20;80(4):102 [PMID: 36939886]
  6. Mar Drugs. 2023 Jun 01;21(6): [PMID: 37367666]
  7. Int J Mol Sci. 2024 Jan 05;25(2): [PMID: 38255792]
  8. Arch Microbiol. 2023 Dec 9;206(1):14 [PMID: 38070019]
  9. Mar Drugs. 2022 Sep 22;20(10): [PMID: 36286416]
  10. Crit Rev Food Sci Nutr. 2024;64(14):4789-4816 [PMID: 36377724]
  11. Bioengineering (Basel). 2024 Jul 15;11(7): [PMID: 39061798]
  12. Molecules. 2020 Dec 18;25(24): [PMID: 33353137]
  13. Nat Rev Mol Cell Biol. 2024 Jan;25(1):13-33 [PMID: 37714962]
  14. Mar Drugs. 2024 Jan 17;22(1): [PMID: 38248671]
  15. Sci Rep. 2024 Apr 24;14(1):9440 [PMID: 38658799]
  16. Foods. 2021 Jun 24;10(7): [PMID: 34202539]
  17. Food Chem. 2020 Nov 15;330:127223 [PMID: 32521401]
  18. Mar Drugs. 2020 Oct 30;18(11): [PMID: 33143025]
  19. Crit Rev Food Sci Nutr. 2024;64(14):4643-4659 [PMID: 36377728]
  20. Food Res Int. 2023 Jul;169:112773 [PMID: 37254377]
  21. Int J Mol Sci. 2020 Dec 04;21(23): [PMID: 33291743]
  22. Inflammopharmacology. 2023 Jun;31(3):1361-1372 [PMID: 36877411]
  23. Crit Rev Food Sci Nutr. 2023;63(26):7996-8012 [PMID: 35319314]
  24. Foods. 2024 Jun 08;13(12): [PMID: 38928753]
  25. Medicina (Kaunas). 2023 Jul 24;59(7): [PMID: 37512162]
  26. Pharmaceuticals (Basel). 2024 Jul 18;17(7): [PMID: 39065808]
  27. Mar Drugs. 2021 Jun 11;19(6): [PMID: 34207952]
  28. Foods. 2020 Mar 08;9(3): [PMID: 32182719]
  29. Environ Sci Pollut Res Int. 2024 May 7;: [PMID: 38710849]
  30. Toxicol Rep. 2024 Jan 14;12:119-127 [PMID: 38293309]
  31. J Biotechnol. 2017 Jan 10;241:175-183 [PMID: 27914891]
  32. Drug Discov Today. 2023 Jun;28(6):103583 [PMID: 37028501]
  33. Nutr Res Rev. 2023 Dec;36(2):498-511 [PMID: 36380523]
  34. Antioxidants (Basel). 2023 Jan 25;12(2): [PMID: 36829830]
  35. Plants (Basel). 2023 Jan 09;12(2): [PMID: 36679026]
  36. J Chromatogr Sci. 2021 Oct 29;59(10):978-982 [PMID: 33881146]
  37. J Environ Manage. 2024 Mar;355:120539 [PMID: 38461640]

MeSH Term

Microalgae
Antioxidants
Xanthophylls
Haptophyta
Computational Biology
Biomass
Culture Media
Molecular Docking Simulation
Phenols

Chemicals

fucoxanthin
Antioxidants
Xanthophylls
Culture Media
Phenols

Word Cloud

Created with Highcharts 10.0.0fucoxanthinantioxidantproductionpotentialFucoxanthinapplicationsmicroalgaetermsstudybiomassmediabasedcarotenoidsmaximumyieldstatisticalanalysispromisingreachingmg/gactivityoptimizationflowratesilicoresearchcarotenoidremarkablepropertiesconsiderablehigh-valuebiotechnologicalpharmaceuticalnutraceuticalcosmeceuticalfieldsHoweverconventionalextractionmethodsmoleculelimitedcost-effectivenessfocusedoptimizingisolatedcoastTadjouraDjiboutitestingvariouscultureculturesevaluatedconcentrationstotalphenolsDifferentnutrientformulationstesteddetermineoptimalcombinationUsingmethodologyprincipalcomponentWalneGuillardF/2identified78MultipleregressionmodelsshowedstrongcorrelationconcentrationproducedthoroughgrowthconditionsusingdesignexperimentsrevealedairCOinfluentialfactorsvalue134Finallyvalidatemoleculardockingperformedshowinginteractsproteins3FS13L2C8BBKconfirmedpositiveresultscultivationalsoprovidedessentialinformationopeningprospectsindustrialfutureProductionMicroalgaeDjibouti:OptimizationCorrelationAntioxidantPotentialBioinformaticsApproachesstudiesapproaches

Similar Articles

Cited By