Advancing Industry: Gene Manipulation and Sustainable Biotechnological Strategies.

Yan Hu, Yijian Wu, Jiayi Song, Maomao Ma, Yunzhu Xiao, Bin Zeng
Author Information
  1. Yan Hu: College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
  2. Yijian Wu: College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
  3. Jiayi Song: College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
  4. Maomao Ma: College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
  5. Yunzhu Xiao: College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
  6. Bin Zeng: College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.

Abstract

is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in , this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including -mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in , it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of using agricultural waste to produce high-value-added products and the future research directions of were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of .

Keywords

References

  1. FEBS Lett. 2022 May;596(10):1356-1364 [PMID: 34817066]
  2. FEBS Lett. 2004 Jan 16;557(1-3):265-8 [PMID: 14741379]
  3. J Agric Food Chem. 2020 Jun 10;68(23):6390-6394 [PMID: 32436380]
  4. Food Res Int. 2021 Sep;147:110452 [PMID: 34399454]
  5. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929-33 [PMID: 347451]
  6. Fungal Genet Biol. 2010 Nov;47(11):881-92 [PMID: 20451644]
  7. Adv Genet. 2016;96:1-51 [PMID: 27968729]
  8. J Ethnopharmacol. 2005 Jan 4;96(1-2):19-29 [PMID: 15588646]
  9. Crit Rev Biotechnol. 2015;35(4):475-84 [PMID: 24666119]
  10. Bioresour Technol. 2022 Jan;344(Pt A):126157 [PMID: 34678450]
  11. Cell Chem Biol. 2017 Dec 21;24(12):1479-1489.e4 [PMID: 29056419]
  12. Front Microbiol. 2019 Sep 10;10:2105 [PMID: 31552008]
  13. Biotechnol Lett. 2022 Apr;44(4):581-593 [PMID: 35262812]
  14. J Fungi (Basel). 2021 Oct 28;7(11): [PMID: 34829206]
  15. Front Microbiol. 2022 Nov 17;13:1009885 [PMID: 36478857]
  16. PLoS One. 2014 May 14;9(5):e97774 [PMID: 24828577]
  17. Biosci Biotechnol Biochem. 2019 Jan;83(1):181-184 [PMID: 30286703]
  18. J Microbiol Methods. 2003 Dec;55(3):687-95 [PMID: 14607411]
  19. Biochim Biophys Acta. 2007 May;1770(5):833-8 [PMID: 17306462]
  20. Front Microbiol. 2021 Jun 22;12:698436 [PMID: 34239513]
  21. Crit Rev Biotechnol. 2019 Mar;39(2):181-191 [PMID: 30394122]
  22. J Nutr Sci. 2020 Nov 11;9:e52 [PMID: 33244403]
  23. Fungal Genet Biol. 2018 Sep;118:37-44 [PMID: 30003956]
  24. Microbiol Spectr. 2023 Mar 22;:e0480022 [PMID: 36946736]
  25. Microb Biotechnol. 2021 Nov;14(6):2343-2355 [PMID: 32841542]
  26. Life (Basel). 2023 Mar 12;13(3): [PMID: 36983919]
  27. Mem Inst Oswaldo Cruz. 1991;86 Suppl 2:211-8 [PMID: 1842004]
  28. J Pharmacol Exp Ther. 2020 May;373(2):279-289 [PMID: 32102917]
  29. Appl Biochem Biotechnol. 2016 Jun;179(4):633-49 [PMID: 26922724]
  30. Gene. 2017 Aug 30;626:132-139 [PMID: 28512059]
  31. Arch Microbiol. 2017 Aug;199(6):939-944 [PMID: 28321481]
  32. Fungal Biol. 2011 Mar;115(3):265-74 [PMID: 21354533]
  33. Biotechnol Biofuels. 2017 Aug 4;10:195 [PMID: 28785311]
  34. J Agric Food Chem. 2018 May 9;66(18):4702-4709 [PMID: 29693394]
  35. Molecules. 2020 Jun 12;25(12): [PMID: 32545666]
  36. World J Microbiol Biotechnol. 2021 May 4;37(6):92 [PMID: 33945073]
  37. Drug Discov Today. 2023 Mar;28(3):103481 [PMID: 36584876]
  38. Front Microbiol. 2018 Jun 12;9:1157 [PMID: 29946301]
  39. Int J Mol Sci. 2023 Feb 27;24(5): [PMID: 36902017]
  40. Fungal Genet Biol. 1997 Dec;22(3):141-50 [PMID: 9454641]
  41. PLoS One. 2014 Mar 10;9(3):e91298 [PMID: 24614118]
  42. Microb Cell Fact. 2018 Feb 05;17(1):18 [PMID: 29402269]
  43. Mol Biotechnol. 2018 May;60(5):380-385 [PMID: 29605840]
  44. Biotechnol Lett. 2020 Jun;42(6):997-1002 [PMID: 32060764]
  45. J Infect Dis. 2005 Nov 1;192(9):1658-65 [PMID: 16206083]
  46. Biotechnol Adv. 2024 Sep;74:108396 [PMID: 38906495]
  47. Arch Microbiol. 2019 Apr;201(3):369-375 [PMID: 30680410]
  48. Bioresour Technol. 2022 Nov;363:127862 [PMID: 36041680]
  49. Bioengineered. 2023 Dec;14(1):2252138 [PMID: 37670430]
  50. Biosci Biotechnol Biochem. 2005 Dec;69(12):2374-80 [PMID: 16377896]
  51. J Agric Food Chem. 2023 Oct 18;71(41):15249-15260 [PMID: 37807760]
  52. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17696-700 [PMID: 17062752]
  53. Appl Microbiol Biotechnol. 2018 May;102(10):4523-4533 [PMID: 29594343]
  54. Foods. 2021 Oct 30;10(11): [PMID: 34828915]
  55. FEMS Microbiol Lett. 2014 Jul;356(1):97-104 [PMID: 24953133]
  56. Curr Opin Biotechnol. 2023 Jun;81:102939 [PMID: 37075529]
  57. Fungal Genet Biol. 2020 Sep;142:103415 [PMID: 32497577]
  58. J Microbiol Biotechnol. 2024 May 28;34(5):1178-1187 [PMID: 38563100]
  59. Biomolecules. 2020 Mar 06;10(3): [PMID: 32155914]
  60. Microb Cell Fact. 2022 Aug 23;21(1):169 [PMID: 35999536]
  61. EMBO J. 1999 Sep 15;18(18):4961-8 [PMID: 10487748]
  62. Int J Med Mushrooms. 2014;16(3):273-91 [PMID: 24941169]
  63. Curr Microbiol. 2022 Dec 2;80(1):12 [PMID: 36459233]
  64. Plant Dis. 2017 May;101(5):726-733 [PMID: 30678568]
  65. Front Bioeng Biotechnol. 2019 Oct 11;7:262 [PMID: 31681742]
  66. Int J Biol Macromol. 2022 Aug 31;215:303-311 [PMID: 35718153]
  67. Microb Cell Fact. 2023 Dec 9;22(1):253 [PMID: 38071331]
  68. Microb Cell Fact. 2018 Mar 27;17(1):49 [PMID: 29587755]
  69. Mycobiology. 2014 Mar;42(1):46-51 [PMID: 24808734]
  70. Int J Biol Macromol. 2024 Mar;260(Pt 1):129336 [PMID: 38224811]
  71. Food Chem. 2022 Jan 30;368:130796 [PMID: 34418691]
  72. Microorganisms. 2021 Mar 25;9(4): [PMID: 33806171]
  73. J Agric Food Chem. 2018 Feb 7;66(5):1191-1196 [PMID: 29276826]
  74. Bioresour Technol. 2018 Nov;268:60-67 [PMID: 30071414]
  75. J Biochem Mol Biol. 2003 Mar 31;36(2):214-22 [PMID: 12689522]
  76. Mycobiology. 2017 Mar;45(1):31-38 [PMID: 28435352]
  77. Appl Microbiol Biotechnol. 2017 Jun;101(11):4645-4657 [PMID: 28409381]
  78. Microb Cell Fact. 2020 Aug 18;19(1):164 [PMID: 32811496]
  79. Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):10836-10844 [PMID: 30322941]
  80. J Fungi (Basel). 2021 Aug 20;7(8): [PMID: 34436213]
  81. J Hazard Mater. 2020 Dec 5;400:123156 [PMID: 32574879]
  82. Biosci Biotechnol Biochem. 2011;75(1):171-4 [PMID: 21228471]
  83. Fitoterapia. 2010 Dec;81(8):961-8 [PMID: 20650308]
  84. Genome Biol. 2011 Nov 23;12(11):R116 [PMID: 22112802]
  85. Microb Biotechnol. 2022 Oct;15(10):2594-2606 [PMID: 35829671]
  86. Biosci Rep. 2009 Jun 25;29(5):321-7 [PMID: 19093913]
  87. Biology (Basel). 2022 Oct 19;11(10): [PMID: 36290438]
  88. Chin J Nat Med. 2020 May;18(5):393-400 [PMID: 32451097]
  89. Environ Microbiol. 2020 Jan;22(1):466-482 [PMID: 31742850]
  90. ACS Synth Biol. 2023 Mar 17;12(3):780-787 [PMID: 36791366]
  91. Molecules. 2021 Mar 24;26(7): [PMID: 33805096]
  92. Microb Biotechnol. 2022 Dec;15(12):2982-2991 [PMID: 36134724]
  93. Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15130-5 [PMID: 26578805]
  94. Gene. 2019 Jul 20;706:84-90 [PMID: 31028867]
  95. Mycobiology. 2015 Mar;43(1):37-42 [PMID: 25892913]
  96. PLoS One. 2014 Sep 15;9(9):e107207 [PMID: 25221949]
  97. Sci Rep. 2019 Feb 13;9(1):1895 [PMID: 30760790]
  98. Appl Microbiol Biotechnol. 2016 Jan;100(2):743-55 [PMID: 26476643]
  99. Molecules. 2017 Jun 13;22(6): [PMID: 28608797]
  100. Nature. 1950 Dec 2;166(4231):949 [PMID: 14796634]
  101. Biochim Biophys Acta. 2012 May;1822(5):784-93 [PMID: 22001064]
  102. PLoS One. 2016 Dec 9;11(12):e0167773 [PMID: 27936063]

Grants

  1. 2021YFA1301302/The Key Special Projects of the National Key Research and Development Plan
  2. 20213AAG02020/Project of the Department of Science and Technology of the Jiangxi Province
  3. 32200606/the National Natural Science Foundation of China
  4. JSZZ202301021/Self-made Experimental Instruments and Equipment Project of Shenzhen Technology University

Word Cloud

Created with Highcharts 10.0.0developmentsustainablemedicinalgenereviewapplicationeditingtechniquestransformationmetabolitesgrowthfuturedirectionsproductionconsideredgreatpotentialdueremarkablepharmacologicaleffectssafetyediblecharacteristicscompletiongenomesequenceadvancementefficientgene-editingtechnologiescoupledidentificationfunctionsfunguspoisedemergeoutstandingstrainengineeringapplicationsfocusesgenomicincluding-mediatedATMTPEG-mediatedprotoplastPMTCRISPR/Cas9researcherscanengineerbiosyntheticpathwaysvaluablesecondaryboostyieldsincludecordycepinpolysaccharidesergothioneineFurthermoreidentifyingmodifyinggenesinfluencediseaseresistancetoleranceenvironmentalstresspossiblestimulateenhancedesirabletraitsincreaseresilienceunfavorableconditionsFinallygreenindustrialusingagriculturalwasteproducehigh-value-addedproductsresearchdiscussedwillprovidelarge-scalebioactiveingredientsmolecularbreedingAdvancingIndustry:GeneManipulationSustainableBiotechnologicalStrategiesCordycepsmilitarissyntheticbiology

Similar Articles

Cited By

No available data.