The Contribution of to Contamination of Water in the Built Environment.

Brian Crook, Charlotte Young, Ceri Rideout, Duncan Smith
Author Information
  1. Brian Crook: Science and Research Centre, Health and Safety Executive, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
  2. Charlotte Young: Science and Research Centre, Health and Safety Executive, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
  3. Ceri Rideout: Specialist Division Occupational Hygiene, Health and Safety Executive, Cardiff CF10 1EP, UK.
  4. Duncan Smith: Specialist Division Health Unit, Health and Safety Executive, Newcastle upon Tyne NE98 1YX, UK.

Abstract

bacteria can proliferate in poorly maintained water systems, posing risks to users. All species are potentially pathogenic, but () is usually the primary focus of testing. However, () also colonizes water distribution systems, is frequently found with , and could be a good indicator for increased risk of nosocomial infection. Anonymized data from three commercial testing laboratories afforded an analysis of 565,750 water samples. The data covered July 2019 to August 2021, including the COVID-19 pandemic. The results confirmed that commonly colonizes water distribution systems, being the most frequently identified non- species. The proportions of and generally remained similar, but increases in during COVID-19 lockdown suggest static water supplies might favor its growth. Disinfection of hospital water systems was effective, but re-colonization did occur, appearing to favor ; however, colony numbers also increased as a proportion of the total. While remains the main species of concern as a risk to human health, 's role should not be underestimated, either as a potential infection risk or as an indicator of the need to intervene to control 's colonization of water supplies.

Keywords

References

  1. FEMS Microbes. 2023 Aug 16;4:xtad016 [PMID: 37705999]
  2. Infect Control Hosp Epidemiol. 2007 Jul;28(7):818-24 [PMID: 17564984]
  3. J Clin Microbiol. 1993 Oct;31(10):2764-8 [PMID: 8253978]
  4. Appl Environ Microbiol. 2012 Oct;78(19):6850-8 [PMID: 22820326]
  5. Appl Environ Microbiol. 1985 Feb;49(2):305-9 [PMID: 3985609]
  6. Int J Hyg Environ Health. 2020 Mar;224:113425 [PMID: 31978741]
  7. Pathogens. 2021 Oct 30;10(11): [PMID: 34832563]
  8. Int J Environ Res Public Health. 2020 Nov 21;17(22): [PMID: 33233464]
  9. J Water Health. 2021 Jun;19(3):468-477 [PMID: 34152299]
  10. Infect Immun. 1990 Sep;58(9):3139-42 [PMID: 2117580]
  11. Infect Control Hosp Epidemiol. 2011 Feb;32(2):166-73 [PMID: 21460472]
  12. Microorganisms. 2021 Jan 31;9(2): [PMID: 33572638]
  13. Euro Surveill. 2011 Jan 06;16(1): [PMID: 21223834]
  14. Microorganisms. 2018 Jul 18;6(3): [PMID: 30021964]
  15. Jpn J Infect Dis. 2007 Feb;60(1):5-9 [PMID: 17314417]
  16. Int J Environ Res Public Health. 2022 Feb 22;19(5): [PMID: 35270223]
  17. J Clin Microbiol. 2014 Jan;52(1):201-11 [PMID: 24197883]
  18. Lancet. 1990 Jul 7;336(8706):35-7 [PMID: 1973219]
  19. J Clin Microbiol. 2006 Jan;44(1):56-9 [PMID: 16390948]
  20. Syst Appl Microbiol. 2011 Feb;34(1):40-4 [PMID: 21247716]
  21. J Infect. 1990 May;20(3):227-9 [PMID: 2341733]
  22. Pathogens. 2021 May 03;10(5): [PMID: 34063633]
  23. Microb Ecol. 2022 Feb;83(2):353-362 [PMID: 34091718]
  24. Diagn Microbiol Infect Dis. 2019 Sep;95(1):71-76 [PMID: 31072645]
  25. Front Public Health. 2016 Aug 31;4:175 [PMID: 27630979]
  26. Clin Infect Dis. 2002 Oct 15;35(8):990-8 [PMID: 12355387]
  27. Water Res. 2021 May 15;196:117013 [PMID: 33813251]
  28. Appl Environ Microbiol. 2010 Oct;76(19):6547-54 [PMID: 20693456]
  29. J Infect Chemother. 2003 Jun;9(2):122-5 [PMID: 12825109]
  30. J Clin Microbiol. 2004 Jan;42(1):458-60 [PMID: 14715805]
  31. Appl Environ Microbiol. 1990 Mar;56(3):796-802 [PMID: 2317047]
  32. J Clin Microbiol. 1990 Jan;28(1):122-3 [PMID: 2405005]
  33. Diagn Microbiol Infect Dis. 2016 Jul;85(3):295-301 [PMID: 27107536]
  34. J Appl Microbiol. 2008 Dec;105(6):2104-14 [PMID: 19120656]
  35. PLoS One. 2016 Jul 21;11(7):e0159726 [PMID: 27442238]
  36. J Clin Microbiol. 2001 Jan;39(1):365-6 [PMID: 11136802]
  37. J Clin Microbiol. 2013 Aug;51(8):2791-3 [PMID: 23761141]
  38. Respir Investig. 2022 Mar;60(2):205-214 [PMID: 34972680]
  39. Front Microbiol. 2020 Dec 15;11:589369 [PMID: 33384668]
  40. J Infect Dis. 2002 Jul 1;186(1):127-8 [PMID: 12089674]
  41. J Hosp Infect. 1991 Jul;18(3):243-8 [PMID: 1680907]
  42. Infect Control Hosp Epidemiol. 2012 Mar;33(3):235-40 [PMID: 22314059]
  43. Clin Microbiol Infect. 2012 Oct;18(10):1004-9 [PMID: 22070605]
  44. Clin Infect Dis. 2003 Nov 15;37(10):1292-7 [PMID: 14583861]
  45. Clin Microbiol Rev. 2002 Jul;15(3):506-26 [PMID: 12097254]
  46. J Appl Microbiol. 2015 Oct;119(4):1158-69 [PMID: 26218315]
  47. Clin Infect Dis. 2009 Aug 15;49(4):543-51 [PMID: 19583519]
  48. J AOAC Int. 2021 Aug 20;104(4):1135-1147 [PMID: 33484265]
  49. J Infect Chemother. 2004 Apr;10(2):133; author reply 134 [PMID: 15160311]

Grants

  1. PH20835/Health and Safety Executive

MeSH Term

Built Environment
Legionella
Water Microbiology
Cross Infection
Humans
Datasets as Topic
COVID-19
Hospitals
Water Supply

Word Cloud

Created with Highcharts 10.0.0watersystemsspeciesriskCOVID-19testingalsocolonizesdistributionfrequentlyindicatorincreasedinfectiondatalockdownsuppliesfavorhospital'sLegionellabacteriacanproliferatepoorlymaintainedposingrisksuserspotentiallypathogenicusuallyprimaryfocusHoweverfoundgoodnosocomialAnonymizedthreecommerciallaboratoriesaffordedanalysis565750samplescoveredJuly2019August2021includingpandemicresultsconfirmedcommonlyidentifiednon-proportionsgenerallyremainedsimilarincreasessuggeststaticmightgrowthDisinfectioneffectivere-colonizationoccurappearinghowevercolonynumbersproportiontotalremainsmainconcernhumanhealthroleunderestimatedeitherpotentialneedintervenecontrolcolonizationContributionContaminationWaterBuiltEnvironmentanisapneumophiladisinfectionrecolonization

Similar Articles

Cited By

No available data.