ACL Injury Etiology in Its Context: A Systems Thinking, Group Model Building Approach.

Charis Tsarbou, Nikolaos I Liveris, Sofia A Xergia, George Papageorgiou, Joanna Kvist, Elias Tsepis
Author Information
  1. Charis Tsarbou: Physiotherapy Department, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece. ORCID
  2. Nikolaos I Liveris: Physiotherapy Department, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece. ORCID
  3. Sofia A Xergia: Physiotherapy Department, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece. ORCID
  4. George Papageorgiou: SYSTEMA Research Centre, European University Cyprus, 2404 Nicosia, Cyprus. ORCID
  5. Joanna Kvist: Unit of Physiotherapy, Department of Health, Medicine and Caring Sciences, Linköping University, 58183 Linköping, Sweden. ORCID
  6. Elias Tsepis: Physiotherapy Department, School of Health Rehabilitation Sciences, University of Patras, 26504 Patras, Greece. ORCID

Abstract

: Given the complex nature of Anterior Cruciate Ligament (ACL) injury, it is important to analyze its etiology with suitable approaches in order to formulate intervention strategies for effective prevention. The present study employs system thinking techniques to develop a Causal Loop Diagram (CLD) Model for investigating the risk factors for ACL Injury (CLD-ACLI), through a Group Model Building approach. : A two-stage procedure was applied involving a comprehensive literature review followed by several systems thinking group-modeling co-creation workshops with stakeholders. : Based on input from experts and stakeholders, combined with the latest scientific findings, the derived CLD-ACLI model revealed a series of interesting complex nonlinear interrelationships causal loops between the likelihood of ACL injury and the number of risk factors. Particularly, the interaction among institutional, psychological, neurocognitive, neuromuscular, malalignment factors, and trauma history seem to affect neuromuscular control, which subsequently may alter the biomechanics of landing, predisposing the ACL to injury. Further, according to the proposed CLD-ACLI model, the risk for injury may increase further if specific environmental and anatomical factors affect the shear forces imposed on the ACL. : The proposed CLD-ACLI model constitutes a rigorous useful conceptual presentation agreed upon among experts on the dynamic interactions among potential intrinsic and extrinsic risk factors for ACL injury. The presented causal loop model constitutes a vital step for developing a validated quantitative system dynamics simulation model for evaluating ACL injury-prevention strategies prior to implementation.

Keywords

References

  1. Br J Sports Med. 2017 Dec;51(23):1670-1678 [PMID: 28784622]
  2. BMJ Open Sport Exerc Med. 2020 May 20;6(1):e000675 [PMID: 32537241]
  3. Sports Med Open. 2023 May 12;9(1):29 [PMID: 37171507]
  4. BMC Musculoskelet Disord. 2017 Aug 9;18(1):346 [PMID: 28793888]
  5. Clin Biomech (Bristol, Avon). 2014 Aug;29(7):752-9 [PMID: 24970112]
  6. Br J Sports Med. 2008 Jul;42(7):561-6 [PMID: 18308891]
  7. Sports Health. 2023 May;15(3):433-442 [PMID: 36154754]
  8. Am J Sports Med. 1996 Jan-Feb;24(1):79-82 [PMID: 8638758]
  9. Knee Surg Sports Traumatol Arthrosc. 2014 Nov;22(11):2821-9 [PMID: 24114352]
  10. Surg Radiol Anat. 2020 Oct;42(10):1209-1217 [PMID: 32444935]
  11. Am J Sports Med. 2021 Jan;49(1):183-192 [PMID: 33381989]
  12. Arthroscopy. 2017 Jun;33(6):1248-1259.e4 [PMID: 28302427]
  13. Br J Sports Med. 2016 Jun;50(12):744-50 [PMID: 27034129]
  14. Sci Rep. 2022 May 19;12(1):8431 [PMID: 35589937]
  15. J Athl Train. 2006 Jul-Sep;41(3):251-9 [PMID: 17043692]
  16. Br J Sports Med. 2019 Mar;53(5):304-308 [PMID: 30104210]
  17. Br J Sports Med. 2016 Nov;50(21):1309-1314 [PMID: 27445362]
  18. J Orthop Res. 2011 Feb;29(2):223-31 [PMID: 20857489]
  19. Orthop J Sports Med. 2020 Dec 09;8(12):2325967120966952 [PMID: 33344669]
  20. Am J Sports Med. 2016 Jul;44(7):1861-76 [PMID: 26772611]
  21. Am J Sports Med. 2020 May;48(6):1505-1515 [PMID: 31469584]
  22. Am J Sports Med. 2016 Feb;44(2):355-61 [PMID: 26646514]
  23. J Sports Sci Med. 2018 Nov 20;17(4):640-649 [PMID: 30479533]
  24. Arthritis Care Res (Hoboken). 2017 Feb;69(2):201-208 [PMID: 27214559]
  25. Open Access J Sports Med. 2013 Dec 05;4:251-60 [PMID: 24379731]
  26. J Orthop Sports Phys Ther. 2020 Sep;50(9):476-489 [PMID: 32741330]
  27. Ann Biomed Eng. 2011 Jan;39(1):110-21 [PMID: 20683675]
  28. J Bone Joint Surg Am. 2011 Jul 20;93(14):1310-7 [PMID: 21792497]
  29. Sci Rep. 2018 Feb 6;8(1):2501 [PMID: 29410451]
  30. Orthopedics. 2000 Jun;23(6):573-8 [PMID: 10875418]
  31. Am J Sports Med. 2005 Oct;33(10):1492-8 [PMID: 16009992]
  32. Clin J Sport Med. 2006 Nov;16(6):522-6 [PMID: 17119365]
  33. Br J Sports Med. 2019 Dec;53(24):1507-1510 [PMID: 30448782]
  34. Orthop J Sports Med. 2023 May 11;11(5):23259671231163627 [PMID: 37197036]
  35. Arch Orthop Trauma Surg. 2018 Jan;138(1):51-61 [PMID: 28983841]
  36. Sports Med. 2019 Apr;49(4):565-586 [PMID: 30659497]
  37. Sports Med. 2020 Oct;50(10):1757-1770 [PMID: 32757162]
  38. J Sci Med Sport. 2006 May;9(1-2):3-9; discussion 10 [PMID: 16616614]
  39. Exerc Sport Sci Rev. 2011 Oct;39(4):161-6 [PMID: 21799427]
  40. Int J Occup Saf Ergon. 2019 Jun;25(2):257-267 [PMID: 28795908]
  41. BMC Musculoskelet Disord. 2019 Apr 6;20(1):146 [PMID: 30954066]
  42. Am J Sports Med. 2015 Nov;43(11):2628-37 [PMID: 26378030]
  43. Int J Sports Phys Ther. 2022 Feb 1;17(2):111-113 [PMID: 35136678]
  44. J Sports Med Phys Fitness. 2007 Dec;47(4):446-54 [PMID: 18091686]
  45. Lancet Reg Health West Pac. 2022 Mar 22;21:100409 [PMID: 35345847]
  46. J Appl Biomech. 2015 Aug;31(4):211-20 [PMID: 25781073]
  47. J Orthop Res. 2018 Oct;36(10):2696-2708 [PMID: 29737024]
  48. Am J Sports Med. 2021 May;49(6):1421-1430 [PMID: 33856914]
  49. J Athl Train. 2015 Sep;50(9):914-20 [PMID: 26285090]
  50. Clin Biomech (Bristol, Avon). 2015 Oct;30(8):781-7 [PMID: 26144662]
  51. Sports Health. 2012 Jan;4(1):69-78 [PMID: 23016072]
  52. Clin Biomech (Bristol, Avon). 2010 Oct;25(8):781-8 [PMID: 20605063]
  53. Am J Sports Med. 2016 Jun;44(6):1492-501 [PMID: 27217522]
  54. J Orthop Res. 1999 Nov;17(6):817-22 [PMID: 10632447]
  55. JBJS Rev. 2019 Sep;7(9):e2 [PMID: 31490339]
  56. Sports Med. 2022 Nov;52(11):2657-2668 [PMID: 35829993]
  57. Am J Sports Med. 2014 May;42(5):1089-95 [PMID: 24595401]
  58. BMJ Open Sport Exerc Med. 2021 May 17;7(2):e001091 [PMID: 34055386]
  59. Clin J Sport Med. 2009 Jan;19(1):3-8 [PMID: 19124976]
  60. Am J Sports Med. 2010 Oct;38(10):1968-78 [PMID: 20702858]
  61. Br J Sports Med. 2020 Dec;54(23):1423-1432 [PMID: 32561515]
  62. Sports Med. 2022 Oct;52(10):2447-2467 [PMID: 35622227]
  63. N Am J Sports Phys Ther. 2010 Dec;5(4):234-51 [PMID: 21655382]
  64. Br J Sports Med. 2017 Mar;51(5):428-435 [PMID: 27418321]
  65. Phys Ther Sport. 2019 May;37:197-209 [PMID: 29859898]
  66. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2023 Dec 15;35:43-47 [PMID: 38187929]
  67. Sports Med. 2021 Apr;51(4):759-776 [PMID: 33400215]
  68. Clin Orthop Surg. 2022 Mar;14(1):76-89 [PMID: 35251544]
  69. Am J Sports Med. 1996 Nov-Dec;24(6):765-73 [PMID: 8947398]
  70. Am J Sports Med. 2014 Feb;42(2):312-9 [PMID: 24275863]
  71. Phys Ther Sport. 2021 Jan;47:165-172 [PMID: 33302113]
  72. Clin Biomech (Bristol, Avon). 2008 Jan;23(1):81-92 [PMID: 17889972]
  73. Knee Surg Sports Traumatol Arthrosc. 2009 Aug;17(8):859-79 [PMID: 19506834]
  74. Scand J Med Sci Sports. 2017 Nov;27(11):1364-1371 [PMID: 27539373]
  75. Sports Med. 2018 Oct;48(10):2227-2234 [PMID: 29956077]
  76. Br J Sports Med. 2015 Oct;49(19):1245-52 [PMID: 26036677]
  77. Phys Ther Sport. 2023 May;61:91-101 [PMID: 36965459]
  78. Am J Sports Med. 2012 Sep;40(9):2029-36 [PMID: 22837428]
  79. Am J Sports Med. 1996 Mar-Apr;24(2):155-9 [PMID: 8775112]
  80. BMC Musculoskelet Disord. 2020 Aug 20;21(1):563 [PMID: 32819327]
  81. Br J Sports Med. 2021 Sep;55(17):984-990 [PMID: 33692033]
  82. J Bone Joint Surg Am. 2008 Apr;90(4):815-23 [PMID: 18381320]
  83. Int J Exerc Sci. 2023 Aug 01;16(3):1052-1065 [PMID: 37649464]
  84. Br J Sports Med. 2019 May;53(9):560-569 [PMID: 29915127]

Word Cloud

Created with Highcharts 10.0.0ACLinjuryfactorsriskmodel:CLD-ACLIstrategiessystemthinkingModelamongcomplexpreventionInjuryGroupBuildingsystemsstakeholdersexpertscausalneuromuscularaffectmayproposedconstitutesdynamicsGivennatureAnteriorCruciateLigamentimportantanalyzeetiologysuitableapproachesorderformulateinterventioneffectivepresentstudyemploystechniquesdevelopCausalLoopDiagramCLDinvestigatingapproachtwo-stageprocedureappliedinvolvingcomprehensiveliteraturereviewfollowedseveralgroup-modelingco-creationworkshopsBasedinputcombinedlatestscientificfindingsderivedrevealedseriesinterestingnonlinearinterrelationshipsloopslikelihoodnumberParticularlyinteractioninstitutionalpsychologicalneurocognitivemalalignmenttraumahistoryseemcontrolsubsequentlyalterbiomechanicslandingpredisposingaccordingincreasespecificenvironmentalanatomicalshearforcesimposedrigoroususefulconceptualpresentationagreedupondynamicinteractionspotentialintrinsicextrinsicpresentedloopvitalstepdevelopingvalidatedquantitativesimulationevaluatinginjury-preventionpriorimplementationEtiologyContext:SystemsThinkingApproachknee

Similar Articles

Cited By