Integrated Transcriptomic Analysis Reveals Reciprocal Interactions between SARS-CoV-2 Infection and Multi-Organ Dysfunction, Especially the Correlation of Renal Failure and COVID-19.

Pai Li, Meng Liu, Wei-Ming He
Author Information
  1. Pai Li: Capricorn Partner, 3000 Leuven, Belgium.
  2. Meng Liu: Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore. ORCID
  3. Wei-Ming He: School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. ORCID

Abstract

The COVID-19 pandemic, which is caused by the SARS-CoV-2 virus, has resulted in extensive health challenges globally. While SARS-CoV-2 primarily targets the respiratory system, clinical studies have revealed that it could also affect multiple organs, including the heart, kidneys, liver, and brain, leading to severe complications. To unravel the intricate molecular interactions between the virus and host tissues, we performed an integrated transcriptomic analysis to investigate the effects of SARS-CoV-2 on various organs, with a particular focus on the relationship between renal failure and COVID-19. A comparative analysis showed that SARS-CoV-2 triggers a systemic immune response in the brain, heart, and kidney tissues, characterized by significant upregulation of cytokine and chemokine secretion, along with enhanced migration of lymphocytes and leukocytes. A weighted gene co-expression network analysis demonstrated that SARS-CoV-2 could also induce tissue-specific transcriptional profiling. More importantly, single-cell sequencing revealed that COVID-19 patients with renal failure exhibited lower metabolic activity in lung epithelial and B cells, with reduced ligand-receptor interactions, especially CD226 and ICAM, suggesting a compromised immune response. A trajectory analysis revealed that COVID-19 patients with renal failure exhibited less mature alveolar type 1 cells. Furthermore, these patients showed potential fibrosis in the hearts, liver, and lung increased extracellular matrix remodeling activities. However, there was no significant metabolic dysregulation in the liver of COVID-19 patients with renal failure. Candidate drugs prediction by Drug Signatures database and LINCS L1000 Antibody Perturbations Database underscored the importance of considering multi-organ effects in COVID-19 management and highlight potential therapeutic strategies, including targeting viral entry and replication, controlling tissue fibrosis, and alleviating inflammation.

Keywords

References

  1. JAMA Intern Med. 2024 Apr 1;184(4):414-423 [PMID: 38407862]
  2. Chest. 2021 Jan;159(1):e7-e11 [PMID: 32931823]
  3. Nat Commun. 2018 Sep 14;9(1):3763 [PMID: 30218063]
  4. Cell Mol Gastroenterol Hepatol. 2021;11(4):935-948 [PMID: 33186749]
  5. Nat Commun. 2019 Sep 26;10(1):4376 [PMID: 31558714]
  6. Front Microbiol. 2023 Jun 07;14:1213111 [PMID: 37350790]
  7. J Am Coll Cardiol. 2020 Aug 4;76(5):533-546 [PMID: 32517963]
  8. Lancet Gastroenterol Hepatol. 2020 May;5(5):428-430 [PMID: 32145190]
  9. JAMA. 2020 Aug 25;324(8):782-793 [PMID: 32648899]
  10. Bioinformatics. 2015 Sep 15;31(18):3069-71 [PMID: 25990557]
  11. Nat Immunol. 2024 Feb;25(2):218-225 [PMID: 38212464]
  12. Int J Environ Res Public Health. 2022 May 27;19(11): [PMID: 35682137]
  13. Nature. 2021 Mar;591(7848):124-130 [PMID: 33494096]
  14. Nucleic Acids Res. 2022 Jul 5;50(W1):W216-W221 [PMID: 35325185]
  15. Recent Adv Inflamm Allergy Drug Discov. 2023;17(1):71-78 [PMID: 36475340]
  16. Physiol Res. 2021 Dec 16;70(S2):S161-S175 [PMID: 34913350]
  17. JAMA Ophthalmol. 2018 Jul 1;136(7):761-769 [PMID: 29800053]
  18. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  19. Br J Pharmacol. 2018 Sep;175(18):3640-3655 [PMID: 29953580]
  20. Nat Commun. 2021 Feb 5;12(1):814 [PMID: 33547300]
  21. J Virol. 2023 Oct 31;97(10):e0102823 [PMID: 37772822]
  22. Nature. 2022 Nov;611(7934):115-123 [PMID: 36180795]
  23. Nature. 2023 Jul;619(7970):585-594 [PMID: 37468583]
  24. N Engl J Med. 2020 Jul 9;383(2):120-128 [PMID: 32437596]
  25. Nat Rev Microbiol. 2024 Feb;22(2):75-88 [PMID: 38114838]
  26. Infect Disord Drug Targets. 2022;22(8):99-103 [PMID: 35638541]
  27. Clin Infect Dis. 2020 Jul 28;71(15):762-768 [PMID: 32161940]
  28. Nat Rev Nephrol. 2022 Aug;18(8):485-498 [PMID: 35418695]
  29. Nat Rev Microbiol. 2024 Jul;22(7):391-407 [PMID: 38622352]
  30. JAMA Netw Open. 2022 Sep 1;5(9):e2229747 [PMID: 36053534]
  31. Kidney Int Suppl. 2008 Dec;(111):S19-23 [PMID: 19034320]
  32. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  33. Lancet. 2020 Mar 7;395(10226):809-815 [PMID: 32151335]
  34. Nature. 2022 Apr;604(7907):697-707 [PMID: 35255491]
  35. Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839 [PMID: 27924018]
  36. Pharmaceuticals (Basel). 2020 Dec 04;13(12): [PMID: 33291642]
  37. Nat Rev Cardiol. 2024 Jun;21(6):379-395 [PMID: 38163814]
  38. Cell Stem Cell. 2020 Dec 3;27(6):937-950.e9 [PMID: 33010822]
  39. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  40. Vaccines (Basel). 2021 Feb 16;9(2): [PMID: 33669441]
  41. Andrology. 2022 Jan;10(1):34-41 [PMID: 34409772]
  42. Curr Protoc. 2021 Mar;1(3):e90 [PMID: 33780170]
  43. Lancet. 2020 Feb 22;395(10224):e39 [PMID: 32035510]
  44. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  45. Int J Cardiol. 2020 Jul 15;311:116-121 [PMID: 32291207]
  46. Int J Environ Res Public Health. 2020 Mar 31;17(7): [PMID: 32244498]
  47. Nat Rev Immunol. 2020 Jun;20(6):355-362 [PMID: 32376901]
  48. Nat Rev Rheumatol. 2021 Jun;17(6):315-332 [PMID: 33903743]
  49. Nat Genet. 2003 Jul;34(3):267-73 [PMID: 12808457]
  50. Nat Commun. 2020 Dec 9;11(1):6319 [PMID: 33298930]
  51. Signal Transduct Target Ther. 2020 Mar 27;5(1):33 [PMID: 32296069]
  52. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  53. Kidney Int Rep. 2020 Jun 09;5(8):1333-1341 [PMID: 32775837]
  54. Nature. 2021 Jul;595(7868):484-485 [PMID: 34234323]
  55. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  56. Mediterr J Hematol Infect Dis. 2020 May 01;12(1):e2020031 [PMID: 32395220]
  57. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  58. Obesity (Silver Spring). 2021 Sep;29(9):1423-1426 [PMID: 33955183]
  59. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  60. Front Microbiol. 2021 Apr 30;12:651403 [PMID: 33995308]
  61. Viruses. 2020 Mar 27;12(4): [PMID: 32230900]
  62. Nephrol Dial Transplant. 2022 Apr 25;37(5):817-824 [PMID: 33313766]
  63. Int J Environ Res Public Health. 2020 Mar 06;17(5): [PMID: 32155789]
  64. Bioorg Med Chem Lett. 2012 Apr 15;22(8):2705-7 [PMID: 22446091]
  65. Nat Commun. 2023 Jul 14;14(1):4201 [PMID: 37452024]
  66. Sci China Life Sci. 2020 Mar;63(3):457-460 [PMID: 32009228]
  67. Adv Chronic Kidney Dis. 2019 Jan;26(1):8-15 [PMID: 30876622]
  68. Nat Commun. 2019 Aug 21;10(1):3763 [PMID: 31434891]
  69. Pancreatology. 2020 Jul;20(5):1013-1014 [PMID: 32498973]
  70. Nature. 2019 Feb;566(7745):496-502 [PMID: 30787437]
  71. J Infect Public Health. 2020 Nov;13(11):1619-1629 [PMID: 32718895]
  72. Nature. 2021 Jan;589(7841):270-275 [PMID: 33116299]
  73. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  74. Nutrients. 2020 Apr 02;12(4): [PMID: 32252338]
  75. FEBS J. 2020 Sep;287(17):3664-3671 [PMID: 32428379]
  76. J Diabetes Investig. 2022 Feb;13(2):213-226 [PMID: 34845863]
  77. World J Virol. 2022 Sep 25;11(5):237-251 [PMID: 36188741]
  78. Antimicrob Agents Chemother. 2015 Feb;59(2):1088-99 [PMID: 25487801]
  79. Front Immunol. 2022 Nov 21;13:1030610 [PMID: 36479112]
  80. Nature. 2021 Jul;595(7865):107-113 [PMID: 33915569]
  81. Nucleic Acids Res. 2022 Jul 5;50(W1):W697-W709 [PMID: 35524556]
  82. Br J Pharmacol. 2022 Jul;179(13):3250-3267 [PMID: 35348204]
  83. Front Pharmacol. 2022 Feb 02;13:791922 [PMID: 35185562]
  84. Cell. 2020 May 14;181(4):905-913.e7 [PMID: 32333836]
  85. Front Physiol. 2021 Feb 25;12:624698 [PMID: 33716771]
  86. Infect Disord Drug Targets. 2022;22(7):27-38 [PMID: 35507796]
  87. Nat Cardiovasc Res. 2022 Mar;1(3):200-210 [PMID: 39195986]
  88. Eur Heart J. 2022 Mar 14;43(11):1124-1137 [PMID: 34999762]

Word Cloud

Created with Highcharts 10.0.0COVID-19SARS-CoV-2analysisrenalfailurepatientsrevealedlivervirusalsoorgansincludingheartbraininteractionstissuestranscriptomiceffectsshowedimmuneresponsesignificantexhibitedmetaboliclungcellspotentialfibrosisinflammationpandemiccausedresultedextensivehealthchallengesgloballyprimarilytargetsrespiratorysystemclinicalstudiesaffectmultiplekidneysleadingseverecomplicationsunravelintricatemolecularhostperformedintegratedinvestigatevariousparticularfocusrelationshipcomparativetriggerssystemickidneycharacterizedupregulationcytokinechemokinesecretionalongenhancedmigrationlymphocytesleukocytesweightedgeneco-expressionnetworkdemonstratedinducetissue-specifictranscriptionalprofilingimportantlysingle-cellsequencingloweractivityepithelialBreducedligand-receptorespeciallyCD226ICAMsuggestingcompromisedtrajectorylessmaturealveolartype1FurthermoreheartsincreasedextracellularmatrixremodelingactivitiesHoweverdysregulationCandidatedrugspredictionDrugSignaturesdatabaseLINCSL1000AntibodyPerturbationsDatabaseunderscoredimportanceconsideringmulti-organmanagementhighlighttherapeuticstrategiestargetingviralentryreplicationcontrollingtissuealleviatingIntegratedTranscriptomicAnalysisRevealsReciprocalInteractionsInfectionMulti-OrganDysfunctionEspeciallyCorrelationRenalFailureorgandysfunction

Similar Articles

Cited By