Network Pharmacology Identifies Intersection Genes of Apigenin and Naringenin in Down Syndrome as Potential Therapeutic Targets.

Mohd Amir, Shabana Shafi, Shahida Parveen, Aijaz Ahmad Reshi, Ajaz Ahmad
Author Information
  1. Mohd Amir: Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia. ORCID
  2. Shabana Shafi: Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah 42353, Saudi Arabia.
  3. Shahida Parveen: Department of Nursing, College of Pharmacy and Applied Medical Sciences (CPAMS), Dar Al Uloom University, Riyadh 13314, Saudi Arabia.
  4. Aijaz Ahmad Reshi: Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah 42353, Saudi Arabia. ORCID
  5. Ajaz Ahmad: Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.

Abstract

Down Syndrome (DS), characterized by trisomy of chromosome 21, leads to the overexpression of several genes contributing to various pathologies, including cognitive deficits and early-onset Alzheimer's disease. This study aimed to identify the intersection genes of two polyphenolic compounds, apigenin and naringenin, and their potential therapeutic targets in DS using network pharmacology. Key proteins implicated in DS, comprising DYRK1A, APP, CBS, and ETS2, were selected for molecular docking and dynamics simulations to assess the binding affinities and stability of the protein-ligand interactions. Molecular docking revealed that naringenin exhibited the highest binding affinity to DYRK1A with a score of -9.3 kcal/mol, followed by CBS, APP, and ETS2. Moreover, molecular docking studies included positive control drugs, such as lamellarin D, valiltramiprosate, benserazide, and TK216, which exhibited binding affinities ranging from -5.5 to -8.9 kcal/mol. Apigenin showed strong binding to APP with a score of -8.8 kcal/mol, suggesting its potential in modulating amyloid-beta levels. These interactions were further validated through molecular dynamics simulations, demonstrating stable binding throughout the 100 ns simulation period. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) analyses indicated minimal fluctuations, confirming the stability of the complexes. The findings suggest that apigenin and naringenin could serve as effective therapeutic agents for DS by targeting key proteins involved in its pathology. Future studies should focus on in vivo validation, clinical trials, and exploring combination therapies to fully harness the therapeutic potential of these compounds for managing DS. This study underscores the promising role of network pharmacology in identifying novel therapeutic targets and agents for complex disorders like DS.

Keywords

References

  1. Cancer Biother Radiopharm. 2017 Nov;32(9):327-334 [PMID: 29111780]
  2. Cell Mol Life Sci. 2021 Jan;78(2):603-619 [PMID: 32870330]
  3. Int J Biol Sci. 2024 Jan 27;20(4):1332-1355 [PMID: 38385077]
  4. J Biomed Res. 2010 Mar;24(2):87-99 [PMID: 23554618]
  5. Biomedicines. 2022 Oct 28;10(11): [PMID: 36359260]
  6. Nutrients. 2013 Sep 26;5(10):3779-827 [PMID: 24077237]
  7. Plants (Basel). 2020 Dec 16;9(12): [PMID: 33339267]
  8. Int J Mol Sci. 2020 May 18;21(10): [PMID: 32443552]
  9. Cell Mol Neurobiol. 2023 Nov;43(8):3943-3963 [PMID: 37819608]
  10. J Neurochem. 2003 Oct;87(1):172-81 [PMID: 12969264]
  11. Sci Rep. 2022 Jan 27;12(1):1539 [PMID: 35087187]
  12. Evid Based Complement Alternat Med. 2013;2013:621423 [PMID: 23762149]
  13. Antioxidants (Basel). 2023 Jan 27;12(2): [PMID: 36829840]
  14. AIMS Neurosci. 2020 Jun 22;7(2):168-193 [PMID: 32607419]
  15. Int J Mol Sci. 2019 Sep 15;20(18): [PMID: 31540192]
  16. Life (Basel). 2022 Oct 19;12(10): [PMID: 36295074]
  17. Biomolecules. 2019 Nov 03;9(11): [PMID: 31684142]
  18. EMBO Mol Med. 2016 Jun 01;8(6):595-608 [PMID: 27025652]
  19. Annu Rev Med. 2009;60:39-54 [PMID: 18729731]
  20. Neurosci Biobehav Rev. 2016 Dec;71:865-877 [PMID: 27826066]
  21. Dis Model Mech. 2016 Aug 1;9(8):839-48 [PMID: 27483355]
  22. Int J Mol Sci. 2019 Mar 15;20(6): [PMID: 30875872]
  23. J Alzheimers Dis. 2010;19(1):311-23 [PMID: 20061647]
  24. Neuron. 2018 Sep 19;99(6):1129-1143 [PMID: 30236283]
  25. Methods Mol Biol. 2017;1520:85-106 [PMID: 27873247]
  26. Curr Neuropharmacol. 2018;16(6):740-748 [PMID: 29046156]
  27. Molecules. 2023 Jul 25;28(15): [PMID: 37570594]
  28. N Engl J Med. 2020 Jun 11;382(24):2344-2352 [PMID: 32521135]
  29. Front Aging Neurosci. 2021 Jul 01;13:700280 [PMID: 34276349]
  30. Biomedicines. 2022 Jul 13;10(7): [PMID: 35884991]
  31. Evid Based Complement Alternat Med. 2021 Jul 24;2021:9980981 [PMID: 34349833]
  32. J Alzheimers Dis. 2017;56(2):459-470 [PMID: 27983553]
  33. Nat Rev Dis Primers. 2020 Feb 6;6(1):9 [PMID: 32029743]
  34. Dis Model Mech. 2023 Apr 1;16(4): [PMID: 36995257]
  35. Food Chem. 2021 Jun 1;346:128933 [PMID: 33418408]
  36. Life (Basel). 2022 Dec 29;13(1): [PMID: 36676048]
  37. FASEB J. 2005 Nov;19(13):1854-6 [PMID: 16160063]
  38. Nutrients. 2019 Mar 31;11(4): [PMID: 30935135]
  39. Nutrients. 2023 Aug 04;15(15): [PMID: 37571391]
  40. Neurobiol Dis. 2003 Dec;14(3):349-56 [PMID: 14678752]
  41. Trop Med Infect Dis. 2023 Sep 26;8(10): [PMID: 37888585]
  42. Antioxidants (Basel). 2020 Aug 03;9(8): [PMID: 32756318]
  43. Curr Comput Aided Drug Des. 2011 Jun;7(2):146-57 [PMID: 21534921]
  44. Tanaffos. 2022 Jan;21(1):1-14 [PMID: 36258912]
  45. PLoS One. 2009;4(2):e4606 [PMID: 19242551]
  46. Biochem Pharmacol. 2023 Jun;212:115521 [PMID: 36990324]
  47. Sci Rep. 2018 Feb 12;8(1):2859 [PMID: 29434250]
  48. Brain Sci. 2018 Oct 16;8(10): [PMID: 30332747]
  49. Med Sci Monit. 2010 May;16(5):RA110-9 [PMID: 20424562]
  50. EPMA J. 2021 Nov 11;12(4):477-505 [PMID: 34786033]
  51. Lancet. 2003 Apr 12;361(9365):1281-9 [PMID: 12699967]
  52. Pharmacol Rev. 2013 Dec 31;66(1):334-95 [PMID: 24381236]
  53. PLoS Comput Biol. 2021 May 13;17(5):e1008936 [PMID: 33983933]
  54. Hum Mol Genet. 2003 Feb 1;12(3):247-55 [PMID: 12554679]
  55. Annu Rev Neurosci. 2011;34:185-204 [PMID: 21456963]
  56. Molecules. 2016 Sep 17;21(9): [PMID: 27649135]
  57. Chin Med. 2023 Nov 8;18(1):146 [PMID: 37941061]

Grants

  1. KSRG-2023-562./King Salman Center for Disability Research

Word Cloud

Created with Highcharts 10.0.0DSbindingnaringenintherapeuticmoleculardockingSyndromeapigeninpotentialnetworkpharmacologyAPPkcal/molgenesstudycompoundstargetsproteinsDYRK1ACBSETS2dynamicssimulationsaffinitiesstabilityinteractionsexhibitedscorestudies-8Apigeninmeansquareagentscharacterizedtrisomychromosome21leadsoverexpressionseveralcontributingvariouspathologiesincludingcognitivedeficitsearly-onsetAlzheimer'sdiseaseaimedidentifyintersectiontwopolyphenolicusingKeyimplicatedcomprisingselectedassessprotein-ligandMolecularrevealedhighestaffinity-93followedMoreoverincludedpositivecontroldrugslamellarinDvaliltramiprosatebenserazideTK216ranging-559showedstrong8suggestingmodulatingamyloid-betalevelsvalidateddemonstratingstablethroughout100nssimulationperiodRootdeviationRMSDrootfluctuationRMSFanalysesindicatedminimalfluctuationsconfirmingcomplexesfindingssuggestserveeffectivetargetingkeyinvolvedpathologyFuturefocusvivovalidationclinicaltrialsexploringcombinationtherapiesfullyharnessmanagingunderscorespromisingroleidentifyingnovelcomplexdisorderslikeNetworkPharmacologyIdentifiesIntersectionGenesNaringeninPotentialTherapeuticTargetsDown

Similar Articles

Cited By

No available data.