SARS-CoV-2 Evolution: Immune Dynamics, Omicron Specificity, and Predictive Modeling in Vaccinated Populations.

Xiaohan Zhang, Mansheng Li, Nana Zhang, Yunhui Li, Fei Teng, Yongzhe Li, Xiaomei Zhang, Xingming Xu, Haolong Li, Yunping Zhu, Yumin Wang, Yan Jia, Chengfeng Qin, Bingwei Wang, Shubin Guo, Yajie Wang, Xiaobo Yu
Author Information
  1. Xiaohan Zhang: State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  2. Mansheng Li: State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  3. Nana Zhang: Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
  4. Yunhui Li: Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
  5. Fei Teng: Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, 100020, China.
  6. Yongzhe Li: Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
  7. Xiaomei Zhang: State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  8. Xingming Xu: State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  9. Haolong Li: Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
  10. Yunping Zhu: State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  11. Yumin Wang: The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
  12. Yan Jia: ProteomicsEra Medical Co. Ltd., Beijing, 102206, China.
  13. Chengfeng Qin: Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
  14. Bingwei Wang: School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
  15. Shubin Guo: Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, 100020, China.
  16. Yajie Wang: Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
  17. Xiaobo Yu: State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China. ORCID

Abstract

Host immunity is central to the virus's spread dynamics, which is significantly influenced by vaccination and prior infection experiences. In this work, we analyzed the co-evolution of SARS-CoV-2 mutation, angiotensin-converting enzyme 2 (ACE2) receptor binding, and neutralizing antibody (NAb) responses across various variants in 822 human and mice vaccinated with different non-Omicron and Omicron vaccines is analyzed. The link between vaccine efficacy and vaccine type, dosing, and post-vaccination duration is revealed. The classification of immune protection against non-Omicron and Omicron variants is co-evolved with genetic mutations and vaccination. Additionally, a model, the Prevalence Score (P-Score) is introduced, which surpasses previous algorithm-based models in predicting the potential prevalence of new variants in vaccinated populations. The hybrid vaccination combining the wild-type (WT) inactivated vaccine with the Omicron BA.4/5 mRNA vaccine may provide broad protection against both non-Omicron variants and Omicron variants, albeit with EG.5.1 still posing a risk. In conclusion, these findings enhance understanding of population immunity variations and provide valuable insights for future vaccine development and public health strategies.

Keywords

References

  1. Cell Discov. 2024 Jan 9;10(1):7 [PMID: 38191591]
  2. Nucleic Acids Res. 2022 Jan 7;50(D1):D1522-D1527 [PMID: 34871441]
  3. Front Immunol. 2023 Jan 19;14:1055457 [PMID: 36742320]
  4. J Mol Model. 2023 Jun 30;29(7):220 [PMID: 37389699]
  5. J Mol Model. 2023 Mar 30;29(4):122 [PMID: 36995499]
  6. BMC Bioinformatics. 2011 Mar 17;12:77 [PMID: 21414208]
  7. Struct Chem. 2022;33(6):2243-2260 [PMID: 36160688]
  8. Nat Commun. 2023 Jun 13;14(1):3478 [PMID: 37311849]
  9. Science. 2020 Aug 21;369(6506):1010-1014 [PMID: 32540901]
  10. Mol Biol Evol. 2022 Feb 3;39(2): [PMID: 35038741]
  11. Sci Bull (Beijing). 2023 Dec 15;68(23):3003-3012 [PMID: 37919162]
  12. Signal Transduct Target Ther. 2021 Dec 17;6(1):430 [PMID: 34921135]
  13. Nature. 2021 Apr;592(7852):116-121 [PMID: 33106671]
  14. Science. 2021 Jan 15;371(6526):284-288 [PMID: 33446556]
  15. Cell. 2021 Feb 18;184(4):861-880 [PMID: 33497610]
  16. Ann Intern Med. 2024 Jul;177(7):892-900 [PMID: 38857503]
  17. iScience. 2023 Aug 14;26(9):107619 [PMID: 37670790]
  18. Nucleic Acids Res. 2019 Jan 8;47(D1):D1211-D1217 [PMID: 30252093]
  19. Eur Rev Med Pharmacol Sci. 2021 Feb;25(3):1663-1669 [PMID: 33629336]
  20. Cell. 2022 Oct 13;185(21):4008-4022.e14 [PMID: 36150393]
  21. J Phys Chem Lett. 2020 Nov 19;11(22):9920-9930 [PMID: 33174418]
  22. Lancet Rheumatol. 2023 Feb;5(2):e88-e98 [PMID: 36712951]
  23. Nature. 2021 Dec;600(7889):517-522 [PMID: 34619745]
  24. Nat Struct Mol Biol. 2020 Oct;27(10):934-941 [PMID: 32737467]
  25. Science. 2020 Jul 3;369(6499):77-81 [PMID: 32376603]
  26. Acta Pharm Sin B. 2020 Jul;10(7):1228-1238 [PMID: 32363136]
  27. Nat Commun. 2021 Jan 11;12(1):244 [PMID: 33431842]
  28. Bioinformatics. 2015 Dec 15;31(24):3997-9 [PMID: 26315911]
  29. Lancet Microbe. 2023 Jun;4(6):e395 [PMID: 37116518]
  30. Nature. 2023 Oct;622(7984):818-825 [PMID: 37821700]
  31. Nat Ecol Evol. 2023 Sep;7(9):1457-1466 [PMID: 37443189]
  32. Nat Med. 2023 Jan;29(1):247-257 [PMID: 36265510]
  33. J Chem Inf Model. 2023 Oct 23;63(20):6183-6191 [PMID: 37805934]
  34. Elife. 2023 Jan 19;12: [PMID: 36655992]
  35. Science. 2023 Oct 6;382(6666):eadj0070 [PMID: 37797027]
  36. J Chem Theory Comput. 2013 Jul 9;9(7):3084-95 [PMID: 26583988]
  37. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  38. Adv Sci (Weinh). 2024 Oct;11(40):e2402639 [PMID: 39206813]
  39. Lancet Microbe. 2022 Mar;3(3):e167 [PMID: 34977829]
  40. Signal Transduct Target Ther. 2023 Apr 17;8(1):167 [PMID: 37069171]
  41. Nat Commun. 2023 Apr 17;14(1):2179 [PMID: 37069158]
  42. JAMA Oncol. 2023 Mar 1;9(3):386-394 [PMID: 36580318]
  43. BMC Infect Dis. 2024 Feb 21;24(1):234 [PMID: 38383356]
  44. BMC Infect Dis. 2022 Nov 28;22(1):894 [PMID: 36443699]
  45. Nature. 2022 Feb;602(7898):657-663 [PMID: 35016194]
  46. EBioMedicine. 2022 May;79:103986 [PMID: 35398786]
  47. Lancet. 2023 Jan 14;401(10371):79 [PMID: 36641201]
  48. J Chem Phys. 2021 Feb 7;154(5):054112 [PMID: 33557541]
  49. Cell. 2022 Feb 3;185(3):457-466.e4 [PMID: 34995482]
  50. Microsc Microanal. 2024 Aug 21;30(4):635-649 [PMID: 38916533]
  51. MedComm (2020). 2022 Aug 12;3(3):e166 [PMID: 35978853]
  52. Nat Rev Immunol. 2020 Aug;20(8):457-458 [PMID: 32636479]
  53. EBioMedicine. 2023 Jan;87:104408 [PMID: 36529104]
  54. Hlife. 2023 Nov;1(1):26-34 [PMID: 38994526]
  55. N Engl J Med. 2023 Mar 23;388(12):1142-1145 [PMID: 36856580]
  56. BMJ. 2023 Aug 16;382:1900 [PMID: 37586736]
  57. Science. 2022 Jun 17;376(6599):1327-1332 [PMID: 35608456]
  58. Biochem Biophys Res Commun. 2020 Jun 30;527(3):618-623 [PMID: 32416961]
  59. Nat Rev Microbiol. 2023 Mar;21(3):162-177 [PMID: 36653446]
  60. Virology. 2023 Aug;585:78-81 [PMID: 37321144]
  61. Cell Res. 2022 Apr;32(4):401-403 [PMID: 35165421]
  62. Mil Med Res. 2021 Dec 16;8(1):67 [PMID: 34911569]
  63. Lancet Infect Dis. 2023 Dec;23(12):e509-e510 [PMID: 37949089]
  64. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  65. Protein Sci. 2024 May;33(5):e4978 [PMID: 38591637]
  66. Nat Rev Microbiol. 2022 Apr;20(4):187-188 [PMID: 35181769]
  67. N Engl J Med. 2023 Jan 19;388(3):214-227 [PMID: 36652353]
  68. Science. 2020 Dec 18;370(6523):1464-1468 [PMID: 33184236]
  69. J Biomed Sci. 2006 Jan;13(1):59-72 [PMID: 16228284]
  70. Nature. 2022 Jul;607(7917):128-134 [PMID: 35447027]
  71. Nat Med. 2023 Apr;29(4):776-780 [PMID: 36807683]
  72. Cell. 2020 Sep 3;182(5):1271-1283.e16 [PMID: 32795413]

Grants

  1. 2022YFE0210400/National Key R&D Program of China
  2. 2023YFC0872400/National Key R&D Program of China
  3. 2021YFA1301604/National Key R&D Program of China
  4. M23010/Beijing Municipal Natural Science Foundation
  5. L234034/Beijing Municipal Natural Science Foundation
  6. 2024-1-1201/Capital Health Development Research Project
  7. 2024-1-4093/Capital Health Development Research Project
  8. Z231100002723004/Beijing Municipal International Cooperation and Exchange Project
  9. SKLP-O202205/State Key Laboratory of Proteomics
  10. SKLP-O202007/State Key Laboratory of Proteomics
  11. 2020B1111100006/Science and Technology Planning Project of Guangdong Province
  12. YN2021DB06/Guangdong-PHOENIX Center Joint Lab on Chinese Medicine
  13. YN2021DB03/Guangdong-PHOENIX Center Joint Lab on Chinese Medicine
  14. ZYYCXTD-C-202204/Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine

MeSH Term

SARS-CoV-2
Humans
COVID-19 Vaccines
Animals
COVID-19
Mice
Antibodies, Neutralizing
Angiotensin-Converting Enzyme 2
Vaccination
Vaccine Efficacy
Mutation
Antibodies, Viral

Chemicals

COVID-19 Vaccines
Antibodies, Neutralizing
Angiotensin-Converting Enzyme 2
Antibodies, Viral
ACE2 protein, human

Word Cloud

Created with Highcharts 10.0.0variantsOmicronvaccinevaccinationnon-OmicronimmunityanalyzedSARS-CoV-2neutralizingantibodyvaccinatedprotectionprevalenceprovideHostcentralvirus'sspreaddynamicssignificantlyinfluencedpriorinfectionexperiencesworkco-evolutionmutationangiotensin-convertingenzyme2ACE2receptorbindingNAbresponsesacrossvarious822humanmicedifferentvaccineslinkefficacytypedosingpost-vaccinationdurationrevealedclassificationimmuneco-evolvedgeneticmutationsAdditionallymodelPrevalenceScoreP-Scoreintroducedsurpassespreviousalgorithm-basedmodelspredictingpotentialnewpopulationshybridcombiningwild-typeWT inactivatedBA4/5mRNAmaybroadalbeitEG51stillposingriskconclusionfindingsenhanceunderstandingpopulationvariationsvaluableinsightsfuturedevelopmentpublichealthstrategiesEvolution:ImmuneDynamicsSpecificityPredictiveModelingVaccinatedPopulationsSARS���CoV���2evolutionproteomics

Similar Articles

Cited By (1)