Principles of Molecular Evolution: Concepts from Non-equilibrium Thermodynamics for the Multilevel Theory of Learning.

Jens Smiatek
Author Information
  1. Jens Smiatek: Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569, Stuttgart, Germany. smiatek@icp.uni-stuttgart.de. ORCID

Abstract

We present a non-equilibrium thermodynamics approach to the multilevel theory of learning for the study of molecular evolution. This approach allows us to study the explicit time dependence of molecular evolutionary processes and their impact on entropy production. Interpreting the mathematical expressions, we can show that two main contributions affect entropy production of molecular evolution processes which can be identified as mutation and gene transfer effects. Accordingly, our results show that the optimal adaptation of organisms to external conditions in the context of evolutionary processes is driven by principles of minimum entropy production. Such results can also be interpreted as the basis of some previous postulates of the theory of learning. Although our macroscopic approach requires certain simplifications, it allows us to interpret molecular evolutionary processes using thermodynamic descriptions with reference to well-known biological processes.

Keywords

References

  1. Agosta SJ, Brooks DR (2020) The major metaphors of evolution-Darwinism then and now. Springer Nature Switzerland, Cham [DOI: 10.1007/978-3-030-52086-1]
  2. Agosta SJ, Klemens JA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11:1123–1134 [PMID: 18778274]
  3. Agosta SJ, Janz N, Brooks DR (2010) How specialists can be generalists: resolving the “parasite paradox’’ and implications for emerging infectious disease. Zoologia (Curitiba) 27:151–162 [DOI: 10.1590/S1984-46702010000200001]
  4. Barato AC, Seifert U (2015) Thermodynamic uncertainty relation for biomolecular processes. Phys Rev Lett 114:158101 [PMID: 25933341]
  5. Begon M, Mortimer M, Thompson DJ (2009) Population ecology: a unified study of animals and plants. Wiley, New York
  6. Ben-Jacob E, Cohen I, Levine H (2000) Cooperative self-organization of microorganisms. Adv Phys 49:395 [DOI: 10.1080/000187300405228]
  7. Bernstein H, Byerly HC, Hopf FA, Michod RE (1985) Genetic damage, mutation, and the evolution of sex. Science 229:1277 [PMID: 3898363]
  8. Bobay L-M, Ochman H (2017) The evolution of bacterial genome architecture. Front Gen 8:72 [DOI: 10.3389/fgene.2017.00072]
  9. Brooks DR (1994) Entropy, information and evolving biological systems. Theo Hist Scient 4:31–49
  10. Brooks DR, Agosta SJ (2012) Children of time: the extended synthesis and major metaphors of evolution. Zoologia (Curitiba) 29:497–514 [DOI: 10.1590/S1984-46702012000600002]
  11. Brooks DR, Wiley EO, Brooks D (1988) Evolution as entropy. University of Chicago Press, Chicago
  12. Brooks DR, Collier J, Maurer BA, Smith JD, Wiley EO (1989) Entropy and information in evolving biological systems. Biol Philos 4:407–432 [DOI: 10.1007/BF00162588]
  13. Callen HB (1957) Principle of minimum entropy production. Phys Rev 105:360 [DOI: 10.1103/PhysRev.105.360]
  14. Darwin C (1964) On the origin of species: a Facsimile of the, 1st edn. Harvard University Press, Cambridge [DOI: 10.2307/j.ctvjf9xp5]
  15. De Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover Publications Inc., New York
  16. Demetrius L (2000) Thermodynamics and evolution. J Theo Biol 206:1 [DOI: 10.1006/jtbi.2000.2106]
  17. Dobzhansky T (1937) Genetic nature of species differences. Am Nat 71:404–420 [DOI: 10.1086/280726]
  18. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667 [PMID: 9560386]
  19. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwiss 58:465 [PMID: 4942363]
  20. Eigen M (1971) Molecular self-organization and the early stages of evolution1. Quart Rev Biophys 4:149 [DOI: 10.1017/S0033583500000627]
  21. Eigen M, Schuster P (1982) Stages of emerging life-five principles of early organization. J Mol Evol 19:47 [PMID: 7161810]
  22. England JL (2013) Statistical physics of self-replication. J Chem Phys 139:121923 [PMID: 24089735]
  23. Fisher R (1930) The evolution of dominance in certain polymorphic species. Am Nat 64:385–406 [DOI: 10.1086/280325]
  24. Gánti T (1997) Biogenesis itself. J Theo Biol 187:583 [DOI: 10.1006/jtbi.1996.0391]
  25. Gánti T (2003) The principles of life. Oxford University Press, Oxford [DOI: 10.1093/acprof]
  26. Gillespie JH (1984) Molecular evolution over the mutational landscape. Evolution 35:1116 [DOI: 10.2307/2408444]
  27. Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. Wiley, New York
  28. Gould SJ (1983) The hardening of the modern synthesis. In: Grene M (ed) Dimensions of Darwinism. Cambridge University Press, Cambridge, pp 71–93
  29. Gould SJ, Eldredge N (1983) Darwin’s gradualism. Syst Biol 32:444–445 [DOI: 10.1093/sysbio/32.4.444]
  30. Hardy GH (1908) Mendelian proportions in a mixed population. Science 28:49–50 [PMID: 17779291]
  31. Huxley J (1942) Evolution: the modern synthesis. Harpers, New York
  32. Jaynes ET (1980) The minimum entropy production principle. Annu Rev Phys Chem 31:579 [DOI: 10.1146/annurev.pc.31.100180.003051]
  33. Jeffery K, Pollack R, Rovelli C (2019) On the statistical mechanics of life: Schrödinger revisited. Entropy 21:1211 [>PMCID: ]
  34. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford [DOI: 10.1093/oso/9780195079517.001.0001]
  35. Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Gen 9:605 [DOI: 10.1038/nrg2386]
  36. Kellogg V (1908) Darwinism today. Henry Holt & Co., New York
  37. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624 [PMID: 5637732]
  38. Klein MJ, Meijer PH (1954) Principle of minimum entropy production. Phys Rev 96:250 [DOI: 10.1103/PhysRev.96.250]
  39. Kuo C-H, Ochman H (2009) Deletional bias across the three domains of life. Gen. Biol. Evol. 1:145 [DOI: 10.1093/gbe/evp016]
  40. Kussell E, Vucelja M (2014) Non-equilibrium physics and evolution-adaptation, extinction, and ecology: a key issues review. Rep Prog Phys 77:102602 [PMID: 25303141]
  41. Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, Berlin [DOI: 10.1007/978-3-540-74252-4]
  42. Li W-H, Graur D (1991) Fundamentals of molecular evolution. Sinauer Associates, Oxford
  43. Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1 [DOI: 10.1016/j.physrep.2005.12.001]
  44. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York
  45. Nicolis G, Prigogine I (1971) Fluctuations in nonequilibrium systems. Proc Natl Acad Sci 68:2102 [PMID: 16591943]
  46. Nielsen R (2006) Statistical methods in molecular evolution. Springer, New York
  47. Novichkov PS, Wolf YI, Dubchak I, Koonin EV (2009) Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol 191:65 [PMID: 18978059]
  48. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299 [PMID: 10830951]
  49. Orr HA (2009) Fitness and its role in evolutionary genetics. Nat Rev Gen 10:531 [DOI: 10.1038/nrg2603]
  50. Perunov N, Marsland RA, England JL (2016) Statistical physics of adaptation. Phys Rev X 6:021036
  51. Prigogine I, Nicolis G (1971) Biological order, structure and instabilities 1. Quart Rev Biophys 4:107 [DOI: 10.1017/S0033583500000615]
  52. Prigogine I, Nicolis G, Babloyantz A (1972) Thermodynamics of evolution. Phys Today 25:23 [DOI: 10.1063/1.3071090]
  53. Pross A (2005) Stability in chemistry and biology: life as a kinetic state of matter. Pure Appl Chem 77:1905 [DOI: 10.1351/pac200577111905]
  54. Pross A (2011) Toward a general theory of evolution: extending Darwinian theory to inanimate matter. J Syst Chem 2:1 [DOI: 10.1186/1759-2208-2-1]
  55. Pross A, Pascal R (2017) How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution. Beil J Org Chem 13:665 [DOI: 10.3762/bjoc.13.66]
  56. Ramstead MJD, Badcock PB, Friston KJ (2018) Answering Schrödinger’s question: a free-energy formulation. Phys Life Rev 24:1 [PMID: 29029962]
  57. Sabater B (2022) Entropy perspectives of molecular and evolutionary biology. Int J Mol Sci 23:4098 [PMID: 35456917]
  58. Sapp J (2003) Genesis: the evolution of biology. Oxford University Press, Oxford [DOI: 10.1093/acprof]
  59. Schrödinger E (1951) What is life? The physical aspect of the living cell. University Press, Cambridge
  60. Schwille P (2015) Jump-starting life? Fundamental aspects of synthetic biology. J Cell Biol 210:687 [PMID: 26323686]
  61. Seifert U (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep Prog Phys 75:126001 [PMID: 23168354]
  62. Sela I, Wolf YI, Koonin EV (2016) Theory of prokaryotic genome evolution. Proc Natl Acad Sci 113:11399 [PMID: 27702904]
  63. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379 [DOI: 10.1002/j.1538-7305.1948.tb01338.x]
  64. Sherwin WB (2018) Entropy, or information, unifies ecology and evolution and beyond. Entropy 20:727 [PMID: 33265816]
  65. Smith JD (1988) A class of mathematical models for evolution and hierarchical information theory. IMA Preprint Series 396
  66. Smith JM (1993) The theory of evolution. Cambridge University Press, Cambridge
  67. Smith JM, Szathmary E (1997) The major transitions in evolution. Oxford University Press, Oxford [DOI: 10.1093/oso/9780198502944.001.0001]
  68. Stern C (1943) The Hardy–Weinberg law. Science 97:137–138 [PMID: 17788516]
  69. Styer DF (2008) Entropy and evolution. Am J Phys 76:1031–1033 [DOI: 10.1119/1.2973046]
  70. Summers RL (2023) Entropic dynamics in a theoretical framework for biosystems. Entropy 25:528 [PMID: 36981416]
  71. Toussaint O, Schneider ED (1998) The thermodynamics and evolution of complexity in biological systems. Comp Biochem Physiol A 120:3 [DOI: 10.1016/S1095-6433(98)10002-8]
  72. Vanchurin V (2021) Toward a theory of machine learning. Mach Learn Sci Technol 2:035012 [DOI: 10.1088/2632-2153/abe6d7]
  73. Vanchurin V, Wolf YI, Koonin EV, Katsnelson MI (2022) Thermodynamics of evolution and the origin of life. Proc Natl Acad Sci USA 119:2120042119 [DOI: 10.1073/pnas.2120042119]
  74. Vanchurin V, Wolf YI, Katsnelson MI, Koonin EV (2022) Toward a theory of evolution as multilevel learning. Proc Natl Acad Sci USA 119:2120037119 [DOI: 10.1073/pnas.2120037119]
  75. Weber BH, Depew DJ, Smith JD, Dyke C (1990) Entropy, information and evolution: new perspectives on physical and biological evolution. Behav Philos 18:79
  76. Weinberg W (1908) Über den Nachweis der Vererbung beim Menschen. Jh Ver Vaterl Naturk Württemb 64:369–382

MeSH Term

Evolution, Molecular
Thermodynamics
Entropy
Mutation
Models, Genetic
Learning

Word Cloud

Created with Highcharts 10.0.0processesmolecularentropyproductionapproachevolutionarycanthermodynamicstheorylearningstudyevolutionallowsusshowgenetransferresultsNon-equilibriumpresentnon-equilibriummultilevelexplicittimedependenceimpactInterpretingmathematicalexpressionstwomaincontributionsaffectidentifiedmutationeffectsAccordinglyoptimaladaptationorganismsexternalconditionscontextdrivenprinciplesminimumalsointerpretedbasispreviouspostulatesAlthoughmacroscopicrequirescertainsimplificationsinterpretusingthermodynamicdescriptionsreferencewell-knownbiologicalPrinciplesMolecularEvolution:ConceptsThermodynamicsMultilevelTheoryLearningEvolutionarypotentialHorizontalMinimumprincipleMutations

Similar Articles

Cited By