Immunotherapy in Gastrointestinal Cancers.

Hazel Lote, Ian Chau
Author Information
  1. Hazel Lote: The Royal Marsden Hospital NHS Foundation Trust, London and Sutton, UK.
  2. Ian Chau: The Royal Marsden Hospital NHS Foundation Trust, London and Sutton, UK. ian.chau@rmh.nhs.uk.

Abstract

Immunotherapy has revolutionised cancer treatment over the past decade. Long-term durable responses can be achieved in some cancer patient populations that were previously facing terminal disease. In this chapter, we summarise current phase 3 clinical trial evidence for the use of immunotherapy in gastrointestinal cancers (oesophageal squamous cell carcinoma, oesophago-gastric adenocarcinoma, pancreatic cancer, biliary cancer, hepatocellular carcinoma, colorectal cancer, and squamous cell cancer of the anus). We discuss meaningful biomarkers used in clinical trials to select patients most likely to benefit from immunotherapy, such as mismatch-repair deficiency (MMRd)/microsatellite instability (MSI) and programmed-death-ligand-1 (PD-L1) immunohistochemistry (IHC) expression. Clinical questions are arising regarding the role of immunotherapy in the adjuvant/perioperative setting, optimal timing of surgery in patients who respond to immunotherapy, and toxicities specific to patients with gastrointestinal malignancies. We outline the current landscape and future horizon of immunotherapy in gastrointestinal cancers, such as strategies to increase effectiveness of checkpoint blockade through combinations with other checkpoint inhibitors, cytotoxic chemotherapy, targeted agents, radiotherapy, CAR-T therapy, and cancer vaccines.

Keywords

References

  1. Reck M, Rodr��guez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. New Engl J Med 375(19):1823���1833. https://doi.org/10.1056/NEJMoa1606774
  2. Brahmer JR, Rodr��guez-Abreu D, Robinson AG et al (2017) Health-related quality-of-life results for pembrolizumab versus chemotherapy in advanced, PD-L1-positive NSCLC (KEYNOTE-024): a multicentre, international, randomised, open-label phase 3 trial. Lancet Oncol 18(12):1600���1609. https://doi.org/10.1016/S1470-2045(17)30690-3
  3. McDermott DF, Atkins MB (2013) PD-1 as a potential target in cancer therapy. Cancer Med 2(5):662���673. https://doi.org/10.1002/cam4.106 [DOI: 10.1002/cam4.106]
  4. Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol Off J Am Soc Clin Oncol 28(19):3167���3175. https://doi.org/10.1200/JCO.2009.26.7609 [DOI: 10.1200/JCO.2009.26.7609]
  5. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8(6):467���477. https://doi.org/10.1038/nri2326 [DOI: 10.1038/nri2326]
  6. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396(6712):643���649. https://doi.org/10.1038/25292
  7. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409���413. https://doi.org/10.1126/science.aan6733
  8. Luchini C, Bibeau F, Ligtenberg MJL et al (2019) ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol 30(8):1232���1243. https://doi.org/10.1093/annonc/mdz116 [DOI: 10.1093/annonc/mdz116]
  9. Li G-M (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85���98. https://doi.org/10.1038/cr.2007.115
  10. Llosa NJ, Cruise M, Tam A et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5(1):43���51. https://doi.org/10.1158/2159-8290.CD-14-0863 [DOI: 10.1158/2159-8290.CD-14-0863]
  11. Lote H, Cafferkey C, Chau I (2015) PD-1 and PD-L1 blockade in gastrointestinal malignancies. Cancer Treat Rev. https://doi.org/10.1016/j.ctrv.2015.09.004
  12. Network CGAR (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202���209. https://doi.org/10.1038/nature13480
  13. Pietrantonio F, Randon G, Di Bartolomeo M et al (2021) Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: a meta-analysis of randomized clinical trials. ESMO Open 6(1). https://doi.org/10.1016/j.esmoop.2020.100036
  14. Chao J, Fuchs CS, Shitara K et al (2021) Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol 7(6):895���902. https://doi.org/10.1001/jamaoncol.2021.0275 [DOI: 10.1001/jamaoncol.2021.0275]
  15. Hu ZI, Shia J, Stadler ZK et al (2018) Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res 24(6):1326���1336. https://doi.org/10.1158/1078-0432.CCR-17-3099 [DOI: 10.1158/1078-0432.CCR-17-3099]
  16. Vogel A, Bridgewater J, Edeline J et al (2023) Biliary tract cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up*. Ann Oncol 34(2):127���140. https://doi.org/10.1016/j.annonc.2022.10.506 [DOI: 10.1016/j.annonc.2022.10.506]
  17. Marabelle A, Le DT, Ascierto PA et al (2020) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38(1):1���10. https://doi.org/10.1200/jco.19.02105 [DOI: 10.1200/jco.19.02105]
  18. Sohal DPS, Kennedy EB, Cinar P et al (2020) Metastatic pancreatic cancer: ASCO guideline update. J Clin Oncol 38(27):3217���3230. https://doi.org/10.1200/JCO.20.01364
  19. Venderbosch S, Nagtegaal ID, Maughan TS et al (2014) Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res Off J Am Assoc Cancer Res 20(20):5322���5330. https://doi.org/10.1158/1078-0432.CCR-14-0332 [DOI: 10.1158/1078-0432.CCR-14-0332]
  20. Bertagnolli MM, Redston M, Compton CC, Niedzwiecki D et al. Microsatellite instability and loss of heterozygosity at chromosomal location 18q: prospective evaluation of biomarkers for stages II and III colon cancer���a study of CALGB 9581 and 89803. 1527-7755 (electronic)
  21. Andr�� T, Shiu KK, Kim TW et al (2020) Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 383(23):2207���2218. https://doi.org/10.1056/NEJMoa2017699 [DOI: 10.1056/NEJMoa2017699]
  22. Diaz LA Jr, Shiu K-K, Kim T-W et al (2022) Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol 23(5):659���670. https://doi.org/10.1016/S1470-2045(22)00197-8 [DOI: 10.1016/S1470-2045(22)00197-8]
  23. Overman MJ, McDermott R, Leach JL et al (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182���1191. https://doi.org/10.1016/S1470-2045(17)30422-9 [DOI: 10.1016/S1470-2045(17)30422-9]
  24. Overman MJ, Lonardi S, Wong KYM et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. 1527-7755 (electronic)
  25. Le DT, Kim TW, Van Cutsem E et al (2019) Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 38(1):11���19. https://doi.org/10.1200/JCO.19.02107
  26. Janjigian YY, Shitara K, Moehler M et al (2021) First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398(10294):27���40. https://doi.org/10.1016/S0140-6736(21)00797-2 [DOI: 10.1016/S0140-6736(21)00797-2]
  27. Kojima T, Shah MA, Muro K et al (2020) Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol 38(35):4138���4148. https://doi.org/10.1200/JCO.20.01888 [DOI: 10.1200/JCO.20.01888]
  28. Sun J-M, Shen L, Shah MA et al (2021) Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study. Lancet 398(10302):759���771. https://doi.org/10.1016/S0140-6736(21)01234-4 [DOI: 10.1016/S0140-6736(21)01234-4]
  29. Oh DY, He AR, Qin S et al (2022) 56P Updated overall survival (OS) from the phase III TOPAZ-1 study of durvalumab (D) or placebo (PBO) plus gemcitabine and cisplatin (+ GC) in patients (pts) with advanced biliary tract cancer (BTC). Ann Oncol 33:S565���S566. https://doi.org/10.1016/j.annonc.2022.07.084 [DOI: 10.1016/j.annonc.2022.07.084]
  30. Kelley RK, Ueno M, Yoo C et al (2023) Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 401(10391):1853���1865. https://doi.org/10.1016/S0140-6736(23)00727-4 [DOI: 10.1016/S0140-6736(23)00727-4]
  31. Cheng A-L, Qin S, Ikeda M et al (2022) Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 76(4):862���873. https://doi.org/10.1016/j.jhep.2021.11.030
  32. Abou-Alfa Ghassan K, Lau G, Kudo M et al (2022) Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid 1(8):EVIDoa2100070. https://doi.org/10.1056/EVIDoa2100070
  33. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. https://doi.org/10.1056/NEJMoa1500596 [DOI: 10.1056/NEJMoa1500596]
  34. Doki Y, Ajani JA, Kato K et al (2022) Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N Engl J Med 386(5):449���462. https://doi.org/10.1056/NEJMoa2111380 [DOI: 10.1056/NEJMoa2111380]
  35. Luo H, Lu J, Bai Y et al (2021) Effect of camrelizumab vs placebo added to chemotherapy on survival and progression-free survival in patients with advanced or metastatic esophageal squamous cell carcinoma: the ESCORT-1st randomized clinical trial. JAMA 326(10):916���925. https://doi.org/10.1001/jama.2021.12836 [DOI: 10.1001/jama.2021.12836]
  36. Xu J, Kato K, Raymond E et al (2023) Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first-line treatment for advanced or metastatic oesophageal squamous cell carcinoma (RATIONALE-306): a global, randomised, placebo-controlled, phase 3 study. Lancet Oncol 24(5):483���495. https://doi.org/10.1016/s1470-2045(23)00108-0 [DOI: 10.1016/s1470-2045(23)00108-0]
  37. Song Y, Zhang B, Xin D et al (2023) First-line serplulimab or placebo plus chemotherapy in PD-L1-positive esophageal squamous cell carcinoma: a randomized, double-blind phase 3 trial. Nat Med 29(2):473���482. https://doi.org/10.1038/s41591-022-02179-2
  38. Lu Z, Wang J, Shu Y et al (2022) Sintilimab versus placebo in combination with chemotherapy as first line treatment for locally advanced or metastatic oesophageal squamous cell carcinoma (ORIENT-15): multicentre, randomised, double blind, phase 3 trial. BMJ 377:e068714. https://doi.org/10.1136/bmj-2021-068714 [DOI: 10.1136/bmj-2021-068714]
  39. Wang Z-X, Cui C, Yao J et al (2022) Toripalimab plus chemotherapy in treatment-na��ve, advanced esophageal squamous cell carcinoma (JUPITER-06): a multi-center phase 3 trial. Cancer Cell 40(3):277���288.e3. https://doi.org/10.1016/j.ccell.2022.02.007
  40. Chin K, Kato K, Cho BC et al (2021) Three-year follow-up of ATTRACTION-3: a phase III study of nivolumab (Nivo) in patients with advanced esophageal squamous cell carcinoma (ESCC) that is refractory or intolerant to previous chemotherapy. J Clin Oncol 39(3_suppl):204���204. https://doi.org/10.1200/JCO.2021.39.3_suppl.204
  41. Okada M, Kato K, Cho BC et al (2022) Three-year follow-up and response-survival relationship of nivolumab in previously treated patients with advanced esophageal squamous cell carcinoma (ATTRACTION-3). Clin Cancer Res 28(15):3277���3286. https://doi.org/10.1158/1078-0432.Ccr-21-0985 [DOI: 10.1158/1078-0432.Ccr-21-0985]
  42. Huang J, Xu J, Chen Y et al (2020) Camrelizumab versus investigator���s choice of chemotherapy as second-line therapy for advanced or metastatic oesophageal squamous cell carcinoma (ESCORT): a multicentre, randomised, open-label, phase 3 study. Lancet Oncol 21(6):832���842. https://doi.org/10.1016/S1470-2045(20)30110-8 [DOI: 10.1016/S1470-2045(20)30110-8]
  43. Rha SY, Wyrwicz LS, Weber PEY et al (2023) VP1-2023: pembrolizumab (pembro) plus chemotherapy (chemo) as first-line therapy for advanced HER2-negative gastric or gastroesophageal junction (G/GEJ) cancer: phase III KEYNOTE-859 study. Ann Oncol 34(3):319���320. https://doi.org/10.1016/j.annonc.2023.01.006 [DOI: 10.1016/j.annonc.2023.01.006]
  44. Kang Y-K, Boku N, Satoh T et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10111):2461���2471. https://doi.org/10.1016/S0140-6736(17)31827-5 [DOI: 10.1016/S0140-6736(17)31827-5]
  45. Finn RS, Qin S, Ikeda M et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382(20):1894���1905. https://doi.org/10.1056/NEJMoa1915745
  46. Kelly RJ, Ajani JA, Kuzdzal J et al (2021) Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med 384(13):1191���1203. https://doi.org/10.1056/NEJMoa2032125 [DOI: 10.1056/NEJMoa2032125]
  47. Obermannov�� R, Alsina M, Cervantes A et al (2022) Oesophageal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up*. Ann Oncol 33(10):992���1004. https://doi.org/10.1016/j.annonc.2022.07.003 [DOI: 10.1016/j.annonc.2022.07.003]
  48. Vaccaro GM, Rothe M, Mangat PK et al (2022) Abstract 107: Nivolumab + ipilimumab in patients with colorectal cancer with high tumor mutational burden (hTMB): results from the targeted agent and profIling utilisation registry (TAPUR) study
  49. Marabelle A, Fakih M, Lopez J et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21(10):1353���1365. https://doi.org/10.1016/S1470-2045(20)30445-9
  50. Janjigian YY, Kawazoe A, Ya��ez P et al (2021) The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 600(7890):727���730. https://doi.org/10.1038/s41586-021-04161-3 [DOI: 10.1038/s41586-021-04161-3]
  51. KEYTRUDA (pembrolizumab) plus trastuzumab and chemotherapy met primary endpoint of progression-free survival as first-line treatment in patients With HER2-positive advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma
  52. Shitara K, Van Cutsem E, Bang Y-J et al (2020) Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol 6(10):1571���1580. https://doi.org/10.1001/jamaoncol.2020.3370 [DOI: 10.1001/jamaoncol.2020.3370]
  53. Shitara K, ��zg��ro��lu M, Bang Y-J et al (2018) Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. The Lancet 392(10142):123���133. https://doi.org/10.1016/S0140-6736(18)31257-1 [DOI: 10.1016/S0140-6736(18)31257-1]
  54. Moehler M, Dvorkin M, Boku N et al (2021) Phase III trial of avelumab maintenance after first-line induction chemotherapy versus continuation of chemotherapy in patients with gastric cancers: results from JAVELIN gastric 100. J Clin Oncol 39(9):966���977. https://doi.org/10.1200/jco.20.00892 [DOI: 10.1200/jco.20.00892]
  55. Fong C, Patel B, Peckitt C et al (2021) Maintenance durvalumab after first-line platinum-based chemotherapy in advanced oesophago-gastric (OG) adenocarcinoma: results from the PLATFORM trial. J Clin Oncol 39(15_suppl):4015���4015. https://doi.org/10.1200/JCO.2021.39.15_suppl.4015
  56. Yau T, Park JW, Finn RS et al (2022) Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 23(1):77���90. https://doi.org/10.1016/s1470-2045(21)00604-5 [DOI: 10.1016/s1470-2045(21)00604-5]
  57. Finn RS, Ryoo BY, Merle P et al (2020) Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol 38(3):193���202. https://doi.org/10.1200/jco.19.01307
  58. Lote H, Starling N, Pihlak R, Gerlinger M (2022) Advances in immunotherapy for MMR proficient colorectal cancer. Cancer Treat Rev 111. https://doi.org/10.1016/j.ctrv.2022.102480
  59. Clinical trials.gov. https://clinicaltrials.gov/
  60. Morris VK, Salem ME, Nimeiri H et al (2017) Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol 18(4):446���453. https://doi.org/10.1016/s1470-2045(17)30104-3 [DOI: 10.1016/s1470-2045(17)30104-3]
  61. Smyth EC, Wotherspoon A, Peckitt C et al (2017) Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol 3(9):1197���1203. https://doi.org/10.1001/jamaoncol.2016.6762 [DOI: 10.1001/jamaoncol.2016.6762]
  62. Al-Batran SE, Lorenzen S, Homann N et al (2021) 1429P pathological regression in patients with microsatellite instability (MSI) receiving perioperative atezolizumab in combination with FLOT vs. FLOT alone for resectable esophagogastric adenocarcinoma: results from the DANTE trial of the German Gastric Group at the AIO and SAKK. Ann Oncol 32:S1069. https://doi.org/10.1016/j.annonc.2021.08.1538
  63. Bang Y-J, Van Cutsem E, Fuchs CS et al (2019) KEYNOTE-585: phase III study of perioperative chemotherapy with or without pembrolizumab for gastric cancer. Future Oncol 15(9):943���952. https://doi.org/10.2217/fon-2018-0581
  64. Merck provides update on phase 3 KEYNOTE-585 trial in locally advanced resectable gastric and gastroesophageal junction (GEJ) adenocarcinoma, 20 June 2023
  65. Gordon A, Challoner B, Athauda A et al (2023) Primary results of the ICONIC phase 2 trial of perioperative FLOT plus avelumab (FLOT-A) in operable oesophagogastric adenocarcinoma (OGA). J Clin Oncol 41(4_suppl):446���446. https://doi.org/10.1200/JCO.2023.41.4_suppl.446
  66. Gerlinger M, Gordon A, Barber LJ et al (2023) Abstract 5591: Circulating tumor DNA for recurrence prediction and efficacy analysis in the ICONIC trial of peri-operative FLOT and avelumab (PD-L1) in localized esophago-gastric adenocarcinoma. Cancer Res 83(7_supplement):5591���5591. https://doi.org/10.1158/1538-7445.AM2023-5591
  67. Cercek A, Lumish M, Sinopoli J et al (2022) PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med 386(25):2363���2376. https://doi.org/10.1056/NEJMoa2201445 [DOI: 10.1056/NEJMoa2201445]
  68. Genentech���s Tecentriq plus Avastin is the first treatment combination to reduce the risk of cancer returning in people with certain types of early-stage liver cancer in a phase III trial, 18 Jan 2023
  69. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443���2454. https://doi.org/10.1056/NEJMoa1200690 [DOI: 10.1056/NEJMoa1200690]
  70. Patnaik A, Kang SP, Rasco D et al (2015) Phase I study of pembrolizumab (MK-3475; Anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-14-2607 [DOI: 10.1158/1078-0432.CCR-14-2607]
  71. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23���34. https://doi.org/10.1056/NEJMoa1504030 [DOI: 10.1056/NEJMoa1504030]
  72. Hamzah A-S, Faisal SA, Wenyi L, Wei Q, Gottumukkala SR, Yinghong W (2018) Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis. J Immunother Cancer 6(1):95. https://doi.org/10.1186/s40425-018-0411-1 [DOI: 10.1186/s40425-018-0411-1]
  73. Xu C, Chen Y-P, Du X-J et al (2018) Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ 363:k4226. https://doi.org/10.1136/bmj.k4226 [DOI: 10.1136/bmj.k4226]
  74. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014���1022. https://doi.org/10.1038/ni.2703 [DOI: 10.1038/ni.2703]
  75. Goodman KA, Xu R-h, Chau I et al (2022) SKYSCRAPER-07: a phase III, randomized, double-blind, placebo-controlled study of atezolizumab with or without tiragolumab in patients with unresectable ESCC who have not progressed following definitive concurrent chemoradiotherapy. J Clin Oncol 40(4_suppl):TPS374���TPS374. https://doi.org/10.1200/JCO.2022.40.4_suppl.TPS374
  76. Rha SY, Miller WH, de Miguel MJ et al (2023) Phase 1 trial of the anti-LAG3 antibody favezelimab plus pembrolizumab in advanced gastric cancer. J Clin Oncol 41(4_suppl):394���394. https://doi.org/10.1200/JCO.2023.41.4_suppl.394
  77. Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 71(7):2488���2496. https://doi.org/10.1158/0008-5472.CAN-10-2820 [DOI: 10.1158/0008-5472.CAN-10-2820]
  78. Teng F, Kong L, Meng X, Yang J, Yu J (2015) Radiotherapy combined with immune checkpoint blockade immunotherapy: achievements and challenges. Cancer Lett 365(1):23���29. https://doi.org/10.1016/j.canlet.2015.05.012 [DOI: 10.1016/j.canlet.2015.05.012]
  79. Yanez PE, Ben-Aharon I, Rojas C et al (2023) First-line lenvatinib plus pembrolizumab plus chemotherapy versus chemotherapy in advanced/metastatic gastroesophageal adenocarcinoma (LEAP-015): safety run-in results. J Clin Oncol 41(4_suppl):411���411. https://doi.org/10.1200/JCO.2023.41.4_suppl.411
  80. Morris VK, Overman MJ, Lam M et al (2022) Bintrafusp alfa, an anti-PD-L1:TGF�� trap fusion protein, in patients with ctDNA-positive, liver-limited metastatic colorectal cancer. Cancer Res Commun 2(9):979���986. https://doi.org/10.1158/2767-9764.CRC-22-0194 [DOI: 10.1158/2767-9764.CRC-22-0194]
  81. Park S, Jiang Z, Mortenson ED et al (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2):160���170. https://doi.org/10.1016/j.ccr.2010.06.014 [DOI: 10.1016/j.ccr.2010.06.014]
  82. Lee MS, Loehrer PJ, Imanirad I et al (2021) Phase II study of ipilimumab, nivolumab, and panitumumab in patients with KRAS/NRAS/BRAF wild-type (WT) microsatellite stable (MSS) metastatic colorectal cancer (mCRC). J Clin Oncol 39(3_suppl):7���7. https://doi.org/10.1200/JCO.2021.39.3_suppl.7
  83. Morris VK, Parseghian CM, Escano M et al (2022) Phase I/II trial of encorafenib, cetuximab, and nivolumab in patients with microsatellite stable, BRAFV600E metastatic colorectal cancer. J Clin Oncol 40(4_suppl):12���12. https://doi.org/10.1200/JCO.2022.40.4_suppl.012
  84. Idos GE, Kwok J, Bonthala N, Kysh L, Gruber SB, Qu C (2020) The prognostic implications of tumor infiltrating lymphocytes in colorectal cancer: a systematic review and meta-analysis. Sci Rep 10(1):3360. https://doi.org/10.1038/s41598-020-60255-4
  85. Qi C, Gong J, Li J et al (2022) Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 28(6):1189���1198. https://doi.org/10.1038/s41591-022-01800-8
  86. Luo T, Fang W, Lu Z et al (2023). EpCAM CAR T (IMC001) for the treatment of advanced GI cancers. J Clin Oncol 41(16_suppl):4034���4034. https://doi.org/10.1200/JCO.2023.41.16_suppl.4034
  87. Zhang C, Wang Z, Yang Z et al (2017) Phase I escalating-dose trial of CAR-T therapy targeting CEA metastatic colorectal cancers. Mol Ther 25(5):1248���1258. https://doi.org/10.1016/j.ymthe.2017.03.010 [DOI: 10.1016/j.ymthe.2017.03.010]
  88. Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM (2023) Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology 164(2):198���213. https://doi.org/10.1053/j.gastro.2022.10.018 [DOI: 10.1053/j.gastro.2022.10.018]

MeSH Term

Humans
Gastrointestinal Neoplasms
Immunotherapy

Word Cloud

Created with Highcharts 10.0.0cancerimmunotherapyImmunotherapygastrointestinalcarcinomapatientscurrentclinicalcancerssquamouscellPD-L1malignanciescheckpointGastrointestinalinhibitionrevolutionisedtreatmentpastdecadeLong-termdurableresponsescanachievedpatientpopulationspreviouslyfacingterminaldiseasechaptersummarisephase3trialevidenceuseoesophagealoesophago-gastricadenocarcinomapancreaticbiliaryhepatocellularcolorectalanusdiscussmeaningfulbiomarkersusedtrialsselectlikelybenefitmismatch-repairdeficiencyMMRd/microsatelliteinstabilityMSIprogrammed-death-ligand-1immunohistochemistryIHCexpressionClinicalquestionsarisingregardingroleadjuvant/perioperativesettingoptimaltimingsurgeryrespondtoxicitiesspecificoutlinelandscapefuturehorizonstrategiesincreaseeffectivenessblockadecombinationsinhibitorscytotoxicchemotherapytargetedagentsradiotherapyCAR-TtherapyvaccinesCancersAnalBiliaryCheckpointColorectalHepatocellularOesophago-gastricPD-1Pancreatic

Similar Articles

Cited By (1)