Inhibition of ULK1/2 and KRAS controls tumor growth in preclinical models of lung cancer.

Phaedra C Ghazi, Kayla T O'Toole, Sanjana Srinivas Boggaram, Michael T Scherzer, Mark R Silvis, Yun Zhang, Madhumita Bogdan, Bryan D Smith, Guillermina Lozano, Daniel L Flynn, Eric L Snyder, Conan G Kinsey, Martin McMahon
Author Information
  1. Phaedra C Ghazi: Department of Oncological Sciences, University of Utah, Salt Lake City, United States. ORCID
  2. Kayla T O'Toole: Department of Oncological Sciences, University of Utah, Salt Lake City, United States.
  3. Sanjana Srinivas Boggaram: Department of Oncological Sciences, University of Utah, Salt Lake City, United States.
  4. Michael T Scherzer: Department of Oncological Sciences, University of Utah, Salt Lake City, United States.
  5. Mark R Silvis: Department of Oncological Sciences, University of Utah, Salt Lake City, United States.
  6. Yun Zhang: Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, United States.
  7. Madhumita Bogdan: Deciphera Pharmaceuticals, St. Lawrence, United States.
  8. Bryan D Smith: Deciphera Pharmaceuticals, St. Lawrence, United States.
  9. Guillermina Lozano: Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, United States. ORCID
  10. Daniel L Flynn: Deciphera Pharmaceuticals, St. Lawrence, United States.
  11. Eric L Snyder: Department of Oncological Sciences, University of Utah, Salt Lake City, United States. ORCID
  12. Conan G Kinsey: Department of Oncological Sciences, University of Utah, Salt Lake City, United States. ORCID
  13. Martin McMahon: Department of Oncological Sciences, University of Utah, Salt Lake City, United States. ORCID

Abstract

Mutational activation of occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRAS such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRAS-driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients who do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRAS, efforts are underway to develop effective combination therapies. Here, we report that the inhibition of KRAS signaling increases autophagy in KRAS-expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRAS-driven lung cancer cell proliferation in vitro and superior tumor control in vivo. Additionally, in genetically engineered mouse models of KRAS-driven NSCLC, inhibition of either KRAS or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRAS in lung cancer.

Keywords

References

  1. J Antimicrob Chemother. 2015;70(6):1608-21 [PMID: 25693996]
  2. Biomol Ther (Seoul). 2023 Jan 1;31(1):1-15 [PMID: 36579459]
  3. Nat Med. 2019 Apr;25(4):620-627 [PMID: 30833748]
  4. Genes Dev. 2019 Feb 1;33(3-4):150-165 [PMID: 30692209]
  5. Cell Death Dis. 2023 Jan 26;14(1):61 [PMID: 36702816]
  6. Cancer Res. 2002 Jul 1;62(13):3659-62 [PMID: 12097271]
  7. Cancer Discov. 2019 Sep;9(9):1167-1181 [PMID: 31434711]
  8. Cancer Treat Rev. 2020 Sep;89:102070 [PMID: 32711246]
  9. Bioinformatics. 2016 Sep 15;32(18):2866-8 [PMID: 27153664]
  10. Science. 2021 Oct 08;374(6564):197-201 [PMID: 34618566]
  11. J Med Chem. 2020 Jul 9;63(13):6679-6693 [PMID: 32250617]
  12. Nat Med. 2019 Apr;25(4):628-640 [PMID: 30833752]
  13. J Clin Invest. 1998 Jul 1;102(1):184-93 [PMID: 9649572]
  14. iScience. 2023 Jan 28;26(2):106080 [PMID: 36824285]
  15. Cancer. 2001 Sep 15;92(6):1525-30 [PMID: 11745231]
  16. Cancers (Basel). 2022 Sep 20;14(19): [PMID: 36230484]
  17. Curr Oncol. 2022 Mar 05;29(3):1695-1708 [PMID: 35323341]
  18. Nature. 2018 Nov;563(7732):569-573 [PMID: 30429607]
  19. Autophagy. 2021 Nov;17(11):3275-3296 [PMID: 33161807]
  20. Annu Rev Immunol. 2003;21:335-76 [PMID: 12524386]
  21. Cancer Discov. 2023 Apr 3;13(4):1002-1025 [PMID: 36715544]
  22. Cell. 2018 Jan 25;172(3):578-589.e17 [PMID: 29373830]
  23. Lab Anim Sci. 1999 Jun;49(3):319-23 [PMID: 10403450]
  24. Cancer Cell. 2013 Feb 11;23(2):143-58 [PMID: 23352126]
  25. J Exp Med. 2023 Mar 6;220(3): [PMID: 36719686]
  26. Onco Targets Ther. 2018 Aug 14;11:4829-4835 [PMID: 30147334]
  27. Oncologist. 2014 Jun;19(6):637-8 [PMID: 24821822]
  28. Eur J Biochem. 1979 Apr 2;95(2):215-25 [PMID: 456353]
  29. Nature. 2019 Nov;575(7781):217-223 [PMID: 31666701]
  30. J Exp Clin Cancer Res. 2018 Dec 4;37(1):302 [PMID: 30514331]
  31. Fam Cancer. 2011 Sep;10(3):447-53 [PMID: 21516316]
  32. Cancer Discov. 2020 Nov;10(11):1654-1671 [PMID: 32792368]
  33. Genes Dev. 2013 Jul 1;27(13):1447-61 [PMID: 23824538]
  34. Biomed Pharmacother. 2020 Dec;132:110872 [PMID: 33068936]
  35. Clin Cancer Res. 2020 Dec 1;26(23):6374-6386 [PMID: 32933997]
  36. Nat Rev Cancer. 2009 Aug;9(8):563-75 [PMID: 19629071]
  37. Toxicol Pathol. 2007 Jan;35(1):59-64 [PMID: 17325973]
  38. J Thorac Dis. 2018 Apr;10(4):2397-2402 [PMID: 29850145]
  39. Cells. 2021 Nov 11;10(11): [PMID: 34831355]
  40. J Vis Exp. 2015 Aug 31;(102):e52964 [PMID: 26381993]
  41. Cancer Discov. 2020 Jan;10(1):54-71 [PMID: 31658955]
  42. J Pathol. 2010 May;221(1):3-12 [PMID: 20225336]
  43. Essays Biochem. 2017 Dec 12;61(6):585-596 [PMID: 29233870]
  44. Elife. 2020 Nov 25;9: [PMID: 33236987]
  45. Ann Oncol. 2015 May;26(5):894-901 [PMID: 25722381]
  46. Autophagy. 2007 Sep-Oct;3(5):452-60 [PMID: 17534139]
  47. Cancer Discov. 2018 Mar;8(3):276-287 [PMID: 29317452]
  48. Oncotarget. 2011 Dec;2(12):1302-6 [PMID: 22185891]
  49. Clin Cancer Res. 2008 Sep 15;14(18):5731-4 [PMID: 18794081]
  50. J Cell Biol. 2008 May 5;181(3):497-510 [PMID: 18443221]
  51. Sci Adv. 2023 Mar 15;9(11):eadd3243 [PMID: 36930718]
  52. Mol Cell. 2013 Apr 25;50(2):185-99 [PMID: 23523371]
  53. Cancer Cell. 2023 Jul 10;41(7):1363-1380.e7 [PMID: 37327788]
  54. Sci Transl Med. 2011 Mar 23;3(75):75ra26 [PMID: 21430269]
  55. Nature. 2021 Nov;599(7886):679-683 [PMID: 34759319]
  56. Nature. 2010 Dec 2;468(7324):653-8 [PMID: 21124450]
  57. Cell. 2004 Dec 17;119(6):861-72 [PMID: 15607981]
  58. N Engl J Med. 2021 Jun 24;384(25):2382-2393 [PMID: 34161704]
  59. Front Oncol. 2021 Dec 24;11:787585 [PMID: 35004309]
  60. Nat Commun. 2014;5:3056 [PMID: 24445999]
  61. Cancer Discov. 2019 Nov;9(11):1606-1627 [PMID: 31350328]
  62. BMC Pulm Med. 2017 Dec 13;17(1):197 [PMID: 29237428]
  63. Nature. 2013 Nov 28;503(7477):548-51 [PMID: 24256730]
  64. Elife. 2018 Nov 26;7: [PMID: 30475207]
  65. Autophagy. 2018;14(8):1435-1455 [PMID: 29940786]
  66. Mol Cell. 2023 Jun 1;83(11):1872-1886.e5 [PMID: 37172591]
  67. Cancer Discov. 2021 Aug;11(8):1913-1922 [PMID: 33824136]

Grants

  1. K08CA230151/NCI NIH HHS
  2. K08 CA230151/NCI NIH HHS
  3. R01 CA131261/NCI NIH HHS
  4. R01CA82577/NCI NIH HHS
  5. UM1 TR004409/NCATS NIH HHS
  6. R01CA176839/NCI NIH HHS
  7. R01CA212415/NCI NIH HHS
  8. P30CA042014/NCI NIH HHS
  9. R01 CA240317/NCI NIH HHS
  10. R01 CA237404/NCI NIH HHS
  11. P30 CA042014/NCI NIH HHS
  12. R01CA237404/NCI NIH HHS
  13. R01CA131261/NCI NIH HHS
  14. R01 CA176839/NCI NIH HHS
  15. F31 CA261116/NCI NIH HHS
  16. R01 CA082577/NCI NIH HHS
  17. R01 CA212415/NCI NIH HHS
  18. R01CA240317/NCI NIH HHS
  19. F31CA261116/NCI NIH HHS

MeSH Term

Animals
Female
Humans
Male
Mice
Antineoplastic Agents
Autophagy
Autophagy-Related Protein-1 Homolog
Carcinoma, Non-Small-Cell Lung
Cell Line, Tumor
Cell Proliferation
Disease Models, Animal
Intracellular Signaling Peptides and Proteins
Lung Neoplasms
Piperazines
Protein Serine-Threonine Kinases
Proto-Oncogene Proteins p21(ras)
Pyridines
Pyrimidines

Chemicals

Antineoplastic Agents
Autophagy-Related Protein-1 Homolog
Intracellular Signaling Peptides and Proteins
KRAS protein, human
Piperazines
Protein Serine-Threonine Kinases
Proto-Oncogene Proteins p21(ras)
Pyridines
Pyrimidines
sotorasib
ULK1 protein, human
Ulk2 protein, human
Hras protein, mouse
Ulk1 protein, mouse
Ulk2 protein, mouse

Word Cloud

Similar Articles

Cited By