Overcoming the coherence time barrier in quantum machine learning on temporal data.

Fangjun Hu, Saeed A Khan, Nicholas T Bronn, Gerasimos Angelatos, Graham E Rowlands, Guilhem J Ribeill, Hakan E T��reci
Author Information
  1. Fangjun Hu: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA. ORCID
  2. Saeed A Khan: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA. ORCID
  3. Nicholas T Bronn: IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA. ORCID
  4. Gerasimos Angelatos: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA. ORCID
  5. Graham E Rowlands: RTX BBN Technologies, Cambridge, MA, USA. ORCID
  6. Guilhem J Ribeill: RTX BBN Technologies, Cambridge, MA, USA.
  7. Hakan E T��reci: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA. tureci@princeton.edu.

Abstract

The practical implementation of many quantum algorithms known today is limited by the coherence time of the executing quantum hardware and quantum sampling noise. Here we present a machine learning algorithm, NISQRC, for qubit-based quantum systems that enables inference on temporal data over durations unconstrained by decoherence. NISQRC leverages mid-circuit measurements and deterministic reset operations to reduce circuit executions, while still maintaining an appropriate length persistent temporal memory in the quantum system, confirmed through the proposed Volterra Series analysis. This enables NISQRC to overcome not only limitations imposed by finite coherence, but also information scrambling in monitored circuits and sampling noise, problems that persist even in hypothetical fault-tolerant quantum computers that have yet to be realized. To validate our approach, we consider the channel equalization task to recover test signal symbols that are subject to a distorting channel. Through simulations and experiments on a 7-qubit quantum processor we demonstrate that NISQRC can recover arbitrarily long test signals, not limited by coherence time.

References

  1. Sci Rep. 2022 Jan 25;12(1):1353 [PMID: 35079045]
  2. Nature. 2024 Feb;626(7997):58-65 [PMID: 38056497]
  3. Nat Commun. 2013;4:1364 [PMID: 23322052]
  4. Phys Rev E. 2021 Sep;104(3-1):034114 [PMID: 34654093]
  5. Phys Rev E. 2023 Mar;107(3-2):035306 [PMID: 37072987]
  6. Nat Commun. 2021 Nov 29;12(1):6961 [PMID: 34845216]
  7. Nat Commun. 2018 Nov 16;9(1):4812 [PMID: 30446662]
  8. Nature. 2023 Jan;613(7944):468-473 [PMID: 36653567]
  9. Science. 2022 Jun 10;376(6598):1182-1186 [PMID: 35679419]
  10. Nature. 2023 Feb;614(7949):676-681 [PMID: 36813892]
  11. Opt Express. 2012 Jan 30;20(3):3241-9 [PMID: 22330562]
  12. Neural Netw. 2019 Jul;115:100-123 [PMID: 30981085]
  13. Phys Rev Lett. 2022 Jan 7;128(1):010604 [PMID: 35061465]
  14. IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):100-112 [PMID: 30892244]
  15. Nat Commun. 2022 Dec 26;13(1):7847 [PMID: 36572696]
  16. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  17. Nature. 2019 Mar;567(7747):209-212 [PMID: 30867609]
  18. Nature. 2022 Jan;601(7894):549-555 [PMID: 35082422]

Grants

  1. HR00112190072/United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  2. FA9550-20-1-0177/United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  3. FA9550-22-1-0203/United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)

Word Cloud

Created with Highcharts 10.0.0quantumcoherenceNISQRCtimetemporallimitedsamplingnoisemachinelearningenablesdatachannelrecovertestpracticalimplementationmanyalgorithmsknowntodayexecutinghardwarepresentalgorithmqubit-basedsystemsinferencedurationsunconstraineddecoherenceleveragesmid-circuitmeasurementsdeterministicresetoperationsreducecircuitexecutionsstillmaintainingappropriatelengthpersistentmemorysystemconfirmedproposedVolterraSeriesanalysisovercomelimitationsimposedfinitealsoinformationscramblingmonitoredcircuitsproblemspersistevenhypotheticalfault-tolerantcomputersyetrealizedvalidateapproachconsiderequalizationtasksignalsymbolssubjectdistortingsimulationsexperiments7-qubitprocessordemonstratecanarbitrarilylongsignalsOvercomingbarrier

Similar Articles

Cited By

No available data.