Leveraging genetic resource diversity and identification of trait-enriched superior genotypes for accelerated improvement in linseed (Linum usitatissimum L.).
Vikender Kaur: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India. kaurvikender@gmail.com.
Sunil S Gomashe: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), Regional Station-Akola, Akola, Maharashtra, India.
Shashank K Yadav: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Devender Singh: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Sheela: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Shubhendra Singh Chauhan: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Vinay Kumar: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Balram Jat: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Nandan Ramesh Tayade: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), Regional Station-Akola, Akola, Maharashtra, India.
Sapna Langyan: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Nutan Kaushik: Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Gautam Buddha Nagar, Noida, UP, India.
Mamta Singh: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Munisha Kheralia: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Dhammaprakash Pandhari Wankhede: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
J Aravind: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Vartika Srivastava: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Kavita Gupta: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Ashok Kumar: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Gyanendra Pratap Singh: Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
Linseed or flaxseed, native to the Indian subcontinent, had undergone domestication, edaphic selection and evolutionary processes that may have resulted in huge genetic variability in Indian genotypes. To understand the hitherto unexplored genetic diversity for sustainable flaxseed production amid challenges of climate fluctuation and identify trait-specific high-yielding genotypes, 2576 unique linseed accessions were comprehensively evaluated for 36 traits for up to six environments representing two major agroecological zones in India. A wide range of variability was recorded for days to initiation of flowering (42.86-114.99), plant height (43.31-122.88 cm), capsules/plant (64.62-375.87), seed size (6.06-14.44 cm), thousand seed weight (2.80-11.86 g), seed yield (2.93-17.28 g/plant), oil content (30.14-45.96%) and fatty acid profile especially the key constituent omega-3 fatty acid (25.4-65.88%). Most of the traits such as plant height, flowering time, seed yield, seed and capsule size showed a high or moderately high level of variance coupled with high broad sense heritability indicating precise capturing of less heritable quantitative traits. The infraspecific classification of the tested collection revealed the seed/oil type (2498 accessions) as the dominant morphotype over dual-purpose/fiber flax (78 accessions) in the conserved collection. Correlation analysis indicated a significant positive association between flowering time, plant height, days to maturity and oil content. Trait-specific superior genotypes for earliness (50% flowering in < 60 days, maturity in < 122 days), bold seeds with high thousand seed weight (> 11 g), capsules/plant (> 350), oil content (> 45%) and fatty acid composition (> 65% alpha-linolenic acid) were identified to aid genetic improvement of linseed and to broaden the narrow genetic base.
Zohary, D. & Hopf, M. Domestication of Plants in the Old World Vol. 3, 125–132 (Oxford University Press, Oxford, 2000).
Langyan, S. et al. Trends and advances in pre- and post-harvest processing of linseed oil for quality food and health products. Crit. Rev. Food Sci. Nutr. 30, 1–24. https://doi.org/10.1080/10408398.2023.2280768 (2023).
[DOI: 10.1080/10408398.2023.2280768]
Awasthi, S., Kaushik, N., Plaha, N. S., Kaur, V. & Kumar, A. Exploring lipid health indices and protein quality in ninety Indian linseed varieties by comprehensive analysis of fatty acid composition, lignan content, and amino acid composition. Ind. Crops Prod. 212, 118366. https://doi.org/10.1016/j.indcrop.2024.118366 (2024).
[DOI: 10.1016/j.indcrop.2024.118366]
FAO. https://www.fao.org/faostat/en/#data/QCL (Accessed 5 June 2022) (2022).
Yadav, B. et al. Integrated omics approaches for flax improvement under abiotic and biotic stress: Current status and future prospects. Front. Plant Sci. 13, 931275. https://doi.org/10.3389/fpls.2022.931275 (2022).
[DOI: 10.3389/fpls.2022.931275]
Kaur, V. et al. Analysis of genetic diversity in Indian and exotic linseed germplasm and identification of trait specific superior accessions. J. Environ. Biol. 39, 702–709. https://doi.org/10.22438/jeb/39/5/MRN-849 (2018).
[DOI: 10.22438/jeb/39/5/MRN-849]
Guo, R. et al. Germination, growth, chlorophyll fluorescence and ionic balance in linseed seedlings subjected to saline and alkaline stresses. Plant Prod. Sci. 17, 20–31. https://doi.org/10.1626/pps.17.20 (2014).
[DOI: 10.1626/pps.17.20]
Zuk, M., Dorota, R., Matuła, J. & Szopa, J. Linseed, the multipurpose plant. Ind. Crops Prod. 75, 165–177. https://doi.org/10.1016/j.indcrop.2015.05.005 (2015).
[DOI: 10.1016/j.indcrop.2015.05.005]
You, F. M. et al. Pedigrees and genetic base of the flax varieties registered in Canada. Can. J. Plant Sci. 96, 837–852. https://doi.org/10.1139/cjps-2015-0337 (2016).
[DOI: 10.1139/cjps-2015-0337]
Irvine, R. B. et al. Impact of production practices on fiber yield of oilseed flax under Canadian prairie conditions. Can. J. Plant Sci. 90, 61–70. https://doi.org/10.4141/CJPS08233 (2010).
[DOI: 10.4141/CJPS08233]
Singh, P. K. & Chopra, P. Double purpose linseed: A viable option for doubling farmers’ income in the north-western Himalayan region. Indian Farming 68, 49–54 (2018).
Soto-Cerda, B. J., Cloutier, S., Gajardo, H. A., Aravena, G. & Quian, R. Identifying drought-resilient flax genotypes and related-candidate genes based on stress indices, root traits and selective sweep. Euphytica 215, 41. https://doi.org/10.1007/s10681-019-2362-0 (2019).
[DOI: 10.1007/s10681-019-2362-0]
Vavilov, N. I. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 13, 1–366 (1951).
Zeven, A. C. & Zhukovsky, P. M. Dictionary of Cultivated Plants and Their Centres of Diversity (Centre for Agricultural Publishing and Documentation, Wageningen, 1975).
Diederichsen, A. & Raney, J. P. Seed colour, seed weight and seed oil content in Linum usitatissimum accessions held by plant gene resources of Canada. Plant Breed. 125, 372–377. https://doi.org/10.1111/j.1439-0523.2006.01231.x (2006).
[DOI: 10.1111/j.1439-0523.2006.01231.x]
Saroha, A. et al. Genetic dissection of thousand-seed weight in linseed (Linum usitatissimum L.) using multi-locus genome-wide association study. Front. Plant Sci. 14, 1166728. https://doi.org/10.3389/fpls.2023.1166728 (2023).
[DOI: 10.3389/fpls.2023.1166728]
Diederichsen, A., Raney, J. P. & Duguid, S. D. Variation of mucilage in flax seed and its relationship with other seed characters. Crop Sci. 46, 365–371. https://doi.org/10.2135/cropsci2005.0146 (2006).
[DOI: 10.2135/cropsci2005.0146]
Saroha, A. et al. Identification of QTNs associated with flowering time, maturity, and plant height traits in Linum usitatissimum L. using genome-wide association study. Front. Genet. 13, 811924. https://doi.org/10.3389/fgene.2022.811924 (2022).
[DOI: 10.3389/fgene.2022.811924]
Saroha, A. et al. Agro-morphological variability and genetic diversity in linseed (Linum usitatissimum L.) germplasm accessions with emphasis on flowering and maturity time. Genet. Resour. Crop Evol. 69, 315–333. https://doi.org/10.1007/s10722-021-01231-3 (2022).
[DOI: 10.1007/s10722-021-01231-3]
Sivaraj, N. et al. Variability in linseed (Linum usitatissimum) germplasm collections from peninsular India with special reference to seed traits and fatty acid composition. Indian J. Agric. Sci. 82, 102–105. https://doi.org/10.56093/ijas.v82i2.15265 (2012).
[DOI: 10.56093/ijas.v82i2.15265]
Pali, V. & Mehta, N. Evaluation of oil content and fatty acid compositions of flax (Linum usitatissimum L.) varieties of India. J. Agric. Sci. 6, 198–207. https://doi.org/10.5539/jas.v6n9p198 (2014).
[DOI: 10.5539/jas.v6n9p198]
Sertse, D. et al. Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. Theor. Appl. Genet. 134, 191–212. https://doi.org/10.1007/s00122-020-03691-0 (2021).
[DOI: 10.1007/s00122-020-03691-0]
Soto-Cerda, B. J. et al. Integrating multi-locus genome-wide association studies with transcriptomic data to identify genetic loci underlying adult root traits responses to drought stress in flax (Linum usitatissimum L.). Environ. Exp. Bot. 202, 105019. https://doi.org/10.1016/j.envexpbot.2022.105019 (2022).
[DOI: 10.1016/j.envexpbot.2022.105019]
Li, X. et al. Genome-wide association study of salt tolerance at the seed germination stage in flax (Linum usitatissimum L.). Genes 13, 486. https://doi.org/10.3390/genes13030486 (2022).
[DOI: 10.3390/genes13030486]
Yadav, N. et al. Effect of GA and Calcium on growth, biochemical and fatty acid composition of linseed under chloride-dominated salinity. Environ. Sci. Pollut. Res. Int. 31, 16958. https://doi.org/10.1007/s11356-024-32325-x (2024).
[DOI: 10.1007/s11356-024-32325-x]
Nair, B. et al. Multi-environment screening of Linum germplasm collection for dissecting the potential of bud fly (Dasyneura lini Barnes) resistance and assembling a reference set for efficient utilization in genetic improvement. Ind. Crops Prod. 207, 117743. https://doi.org/10.1016/j.indcrop.2023.117743 (2023).
[DOI: 10.1016/j.indcrop.2023.117743]
Kumar, V. et al. Biophysical and morphological basis of resistance against linseed (Linum usitatissimum L.) bud fly (Dasyneura lini Barnes). Indian J. Plant Genet. Resour. 36, 382–386 (2023).
[DOI: 10.61949/0976-1926.2023.v36i03.06]
Plaha, N. S. et al. Comparison of nutritional quality of fourteen wild Linum species based on fatty acid composition, lipid health indices, and chemometric approaches unravelling their nutraceutical potential. Heliyon 9, e21192. https://doi.org/10.1016/j.heliyon.2023.e21192 (2023).
[DOI: 10.1016/j.heliyon.2023.e21192]
Kaur, V. et al. Diversity of Linum genetic resources in global genebanks: From agro-morphological characterisation to novel genomic technologies: A review. Front. Nutr. 10, 1165580. https://doi.org/10.3389/fnut.2023.1165580 (2023).
[DOI: 10.3389/fnut.2023.1165580]
Diederichsen, A., Kusters, P. M., Kessler, D., Bainas, Z. & Gugel, R. K. Assembling a core collection from the flax world collection maintained by plant gene resources of Canada. Genet. Resour. Crop Evol. 60, 1479–1485. https://doi.org/10.1007/s10722-012-9936-1 (2013).
[DOI: 10.1007/s10722-012-9936-1]
Diederichsen, A. & Fu, Y. Phenotypic and molecular (RAPD) differentiation of four infraspecific groups of cultivated flax (Linum usitatissimum L. subsp. usitatissimum). Genet. Resour. Crop Evol. 53, 77–90. https://doi.org/10.1007/s10722-004-0579-8 (2006).
[DOI: 10.1007/s10722-004-0579-8]
Diederichsen, A. et al. Diversity in the flax collection at plant gene resources of Canada in Proceedings of the 59th Flax Institute of the United States. 138–143 (Doublewood Inn, Fargo, North Dakota, USA. Flax Institute, Fargo, USA, 2002).
Worku, N., Heslop-Harrison, J. S. & Adugna, W. Diversity in 198 Ethiopian linseed (Linum usitatissimum) accessions based on morphological characterization and seed oil characteristics. Genet. Resour. Crop Evol. 62, 1037–1053. https://doi.org/10.1007/s10722-014-0207-1 (2015).
[DOI: 10.1007/s10722-014-0207-1]
Zhuchenko, A. A. & Rozhmina, T. A. Mobilization of flax genetic resources. (2000).
You, F. M. et al. Genetic variability of 27 traits in a core collection of flax (Linum usitatissimum L). Front. Plant Sci. 8, 1636. https://doi.org/10.3389/fpls.2017.01636 (2017).
[DOI: 10.3389/fpls.2017.01636]
Diederichsen, A. Ex situ collections of cultivated flax (Linum usitatissimum L.) and other species of the genus Linum L. Genet. Resour. Crop Evol. 54, 661–678. https://doi.org/10.1007/s10722-006-9119-z (2007).
[DOI: 10.1007/s10722-006-9119-z]
Chandrawati, S. N. et al. Genetic diversity, population structure and association analysis in linseed (Linum usitatissimum L.). Physiol. Mol. Biol. Plants 23, 207–219. https://doi.org/10.1007/s12298-016-0408-5 (2017).
[DOI: 10.1007/s12298-016-0408-5]
Dhirhi, N. & Mehta, N. Estimation of genetic variability and correlation in F2 segregating generation in linseed (Linum usitatisimum L.). Plant Arch. 19, 475–484 (2019).
Dikshit, N. & Sivaraj, N. Analysis of agro-morphological diversity and oil content in Indian linseed germplasm. Grasas Aceites 66, e060. https://doi.org/10.3989/gya.0689141 (2015).
[DOI: 10.3989/gya.0689141]
Nizar, M. A. & Mulani, R. M. Genetic diversity in indigenous and exotic linseed germplasm (Linum usitatissimum L.). Electron. J. Plant Breed. 6, 848–854 (2015).
Kaur, V. et al. Phenotypic characterization, genetic diversity assessment in 6778 accessions of barley (Hordeum vulgare L. ssp. vulgare) germplasm conserved in National Genebank of India and development of a core set. Front. Plant Sci. 13, 771920. https://doi.org/10.3389/fpls.2022.771920 (2022).
[DOI: 10.3389/fpls.2022.771920]
Diederichsen, A. & Ulrich, A. Variability in stem fibre content and its association with other characteristics in 1177 flax (Linum usitatissimum L.) genebank accessions. Ind. Crop Prod. 30, 33–39. https://doi.org/10.1016/j.indcrop.2009.01.002 (2009).
[DOI: 10.1016/j.indcrop.2009.01.002]
Kaur, V. et al. Multi-environment phenotyping of linseed (Linum usitatissimum L.) germplasm for morphological and seed quality traits to assemble a core collection. Ind. Crops Prod. 206, 117657. https://doi.org/10.1016/j.indcrop.2023.117657 (2023).
[DOI: 10.1016/j.indcrop.2023.117657]
Wu & Sanchez. Further, the genetic dissection of the individual trait would help in developing an allele model to study optimal strategies under different gene actions for long-term genetic gain (2011).
Kaur, V., Yadav, R. & Wankhede, D. P. Linseed (Linum usitatissimum L.) genetic resources for climate change intervention and its future breeding. J. Appl. Nat. Sci. 9, 1112–1118. https://doi.org/10.31018/jans.v9i2.1331 (2017).
[DOI: 10.31018/jans.v9i2.1331]
Federer, W. T. Augmented (or hoonuiaku) designs. Hawaii Plant Record 55, 191–208 (1956).
AOAC. Official Methods of Analysis of the Association of Official Agricultural Chemicals, 10th ed. 744–745 (AOAC:Rockville, MD, USA, (1970).
Kaushik, N. Determination of azadirachtin and fatty acid methy esters of Azadirachta indica seeds by HPLC and GLC. Anal. Bioanal. Chem. 374, 1199–1204. https://doi.org/10.1007/s00216-002-1638-7 (2002).
[DOI: 10.1007/s00216-002-1638-7]
Aravind, J., Sankar, S. M., Wankhede, D. P. & Kaur, V. Augmented RCBD: Analysis of augmented randomised complete block designs (R package version 0.1.6) (2023).
Burton, G. W. Quantitative inheritance in grasses. Proc. Int. Grassl. Cong. 1, 277–283 (1952).
Sivasubramanian, S. & Madhavamenon, P. Genotypic and phenotypic variability in rice. Madras Agric. J. 60, 1093–1096 (1978).
Lush, J. L. Intrusive collection of regression of offspring on dams as a method of estimating heritability of characters. Proc. Am. Soc. Anim. Prod. 33, 293–301 (1940).
Robinson, H. F. Quantitative genetics in relation to breeding of the centennial of mendelism (The impact of mendelism on agriculture, biology and medicine). Indian J. Genet. 26A, 171–187 (1966).
Johnson, H. W., Robinson, H. F. & Comstock, R. Estimates of genetic and environmental variability in soybeans. Agron. J. 47, 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009x (1955).
[DOI: 10.2134/agronj1955.00021962004700070009x]
Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication 1–117 (The University of Illinois Press, Urbana, 1949).
Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Grants
BT/Ag/Network/Linseed/2019-20/Department of Biotechnology, Ministry of Science and Technology, India