inhibits hepatic fibrosis and hepatic stellate cell activation by targeting the PI3K/Akt/mTOR pathway.

Zhiheng Dong, Haibin Guan, Lu Wang, Lijuan Liang, Yifan Zang, Lan Wu, Lidao Bao
Author Information
  1. Zhiheng Dong: Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China.
  2. Haibin Guan: College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China.
  3. Lu Wang: College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China.
  4. Lijuan Liang: College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China.
  5. Yifan Zang: College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China.
  6. Lan Wu: Mongolia Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010110, P.R. China.
  7. Lidao Bao: Department of Pharmacy, Hohhot First Hospital, Hohhot, Inner Mongolia Autonomous Region 010030, P.R. China.

Abstract

Hepatic fibrosis (HF) is a process that occurs during the progression of several chronic liver diseases, for which there is a lack of effective treatment options. (CTL) is often used in Chinese or Mongolian medicine to treat liver diseases. However, its mechanism of action remains unclear. In the present study, CTL was used to treat rats with CCl4‑induced HF. The histopathological, biochemical and HF markers of the livers of the rats were analyzed, and CTL‑infused serum was used to treat hepatic stellate cells (HSCs) in order to detect the relevant markers of HSC activation. Protein expression pathways were detected both and . Histopathological results showed that CTL significantly improved CCl4‑induced liver injury, reduced aspartate aminotransferase and alanine aminotransferase levels, promoted E‑cadherin expression, and decreased α‑smooth muscle actin (SMA), SOX9, collagen I and hydroxyproline expression. Moreover, CTL‑infused serum was found to decrease α‑SMA and collagen I expression in HSCs. Further studies showed that CTL inhibited the activity of the PI3K/Akt/mTOR pathway in the rat livers. Following the administration of the PI3K agonist 740Y‑P to HSCs, the inhibitory effect of CTL on the PI3K/Akt//mTOR pathway was blocked. These results suggested that CTL can inhibit HF and HSC activation by inhibiting the PI3K/Akt/mTOR pathway.

Keywords

References

  1. Phytomedicine. 2023 Dec;121:155117 [PMID: 37820467]
  2. Sci Transl Med. 2022 Dec 21;14(676):eabj4221 [PMID: 36542691]
  3. Am J Physiol Gastrointest Liver Physiol. 2019 Apr 1;316(4):G539-G550 [PMID: 30735452]
  4. Cell Biol Int. 2021 Sep;45(9):1866-1875 [PMID: 33835632]
  5. Alcohol. 2020 Aug;86:81-91 [PMID: 32171770]
  6. J Clin Exp Hepatol. 2024 Sep-Oct;14(5):101400 [PMID: 38601748]
  7. Biomed Pharmacother. 2018 Jul;103:699-707 [PMID: 29680738]
  8. Eur J Clin Invest. 2020 Jun;50(6):e13243 [PMID: 32306379]
  9. Nat Commun. 2014 Jul 21;5:4451 [PMID: 25043713]
  10. J Gastroenterol Hepatol. 2007 Jun;22 Suppl 1:S79-84 [PMID: 17567474]
  11. Evid Based Complement Alternat Med. 2016;2016:2974256 [PMID: 27293456]
  12. Bioengineered. 2021 Dec;12(1):6538-6558 [PMID: 34528858]
  13. Phytomedicine. 2023 Apr;112:154684 [PMID: 36738477]
  14. Indian J Pharmacol. 2020 Mar-Apr;52(2):108-116 [PMID: 32565598]
  15. Cureus. 2024 Mar 27;16(3):e57047 [PMID: 38681435]
  16. Lipids. 2007 Sep;42(9):821-5 [PMID: 17546469]
  17. Biomaterials. 2021 Sep;276:121003 [PMID: 34273686]
  18. Acta Biomater. 2023 Sep 15;168:484-496 [PMID: 37392933]
  19. J Ethnopharmacol. 2022 Nov 15;298:115656 [PMID: 36041691]
  20. J Gastroenterol Hepatol. 2024 Jul;39(7):1422-1430 [PMID: 38523410]
  21. Hepatology. 2020 Nov;72(5):1800-1818 [PMID: 32064648]
  22. Exp Ther Med. 2022 Jun;23(6):417 [PMID: 35601068]
  23. Exp Ther Med. 2021 Aug;22(2):849 [PMID: 34149895]
  24. Eur J Endocrinol. 2023 Jul 10;188(7):564-577 [PMID: 37358209]
  25. Alcohol Clin Exp Res (Hoboken). 2023 Mar;47(3):448-458 [PMID: 36799106]
  26. Drug Des Devel Ther. 2019 May 31;13:1889-1900 [PMID: 31213776]
  27. Int J Mol Sci. 2021 Aug 17;22(16): [PMID: 34445559]
  28. Nat Commun. 2023 Aug 26;14(1):5219 [PMID: 37633932]
  29. Front Pharmacol. 2022 Jun 13;13:874408 [PMID: 35770089]
  30. Toxicology. 2017 Apr 15;381:75-86 [PMID: 27818223]
  31. J Biol Chem. 2017 Jul 28;292(30):12436-12448 [PMID: 28615446]
  32. Gastroenterology. 2021 Apr;160(5):1741-1754.e16 [PMID: 33346004]
  33. FEMS Microbiol Lett. 2022 Apr 21;369(1): [PMID: 35349671]
  34. Cell Death Dis. 2024 Jan 12;15(1):41 [PMID: 38216590]
  35. Vasc Health Risk Manag. 2010 Nov 03;6:1007-14 [PMID: 21127697]
  36. Hepatology. 2021 Jun;73(6):2527-2545 [PMID: 33576020]
  37. Int Immunopharmacol. 2019 Oct;75:105765 [PMID: 31336335]
  38. Oxid Med Cell Longev. 2022 Jan 5;2022:9938392 [PMID: 35035671]
  39. Cold Spring Harb Protoc. 2017 Nov 1;2017(11):pdb.prot100271 [PMID: 29093207]
  40. Diagnostics (Basel). 2020 Oct 04;10(10): [PMID: 33020436]
  41. Biol Pharm Bull. 2020 Nov 1;43(11):1634-1642 [PMID: 32893252]
  42. Acta Pharm Sin B. 2022 May;12(5):2300-2314 [PMID: 35646542]
  43. Front Pharmacol. 2021 Sep 30;12:739864 [PMID: 34658877]
  44. Electron Physician. 2018 Apr 25;10(4):6672-6681 [PMID: 29881530]
  45. J Hepatol. 2023 Mar;78(3):471-478 [PMID: 36410554]
  46. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  47. Front Pharmacol. 2022 Mar 11;13:801982 [PMID: 35359829]
  48. Acta Biomater. 2022 Oct 15;152:235-254 [PMID: 36087869]
  49. Front Med (Lausanne). 2024 Mar 25;11:1389329 [PMID: 38590313]
  50. Evid Based Complement Alternat Med. 2018 Sep 25;2018:8259280 [PMID: 30356354]
  51. J Cell Biochem. 2023 Jun;124(6):808-817 [PMID: 37042199]
  52. Int Immunopharmacol. 2023 Jul;120:110375 [PMID: 37267857]
  53. Pharm Biol. 2021 Dec;59(1):335-346 [PMID: 35086399]
  54. Am J Chin Med. 2016;44(2):197-226 [PMID: 27080938]
  55. Mater Sci Eng C Mater Biol Appl. 2020 Nov;116:111160 [PMID: 32806289]
  56. Cells. 2023 Jun 08;12(12): [PMID: 37371052]
  57. J Cardiovasc Pharmacol. 2019 Sep;74(3):228-234 [PMID: 31356540]
  58. Am J Chin Med. 2023;51(7):1675-1709 [PMID: 37646140]

MeSH Term

Animals
Hepatic Stellate Cells
TOR Serine-Threonine Kinases
Carthamus tinctorius
Proto-Oncogene Proteins c-akt
Phosphatidylinositol 3-Kinases
Liver Cirrhosis
Signal Transduction
Rats
Male
Carbon Tetrachloride
Rats, Sprague-Dawley
Plant Extracts
Liver

Chemicals

TOR Serine-Threonine Kinases
Proto-Oncogene Proteins c-akt
Phosphatidylinositol 3-Kinases
Carbon Tetrachloride
Plant Extracts

Word Cloud

Created with Highcharts 10.0.0CTLhepaticpathwayHFexpressionPI3K/Akt/mTORfibrosisliverusedtreatstellateHSCsactivationdiseasesratsCCl4‑inducedmarkersliversCTL‑infusedserumHSCresultsshowedaminotransferasecollagencellHepaticprocessoccursprogressionseveralchroniclackeffectivetreatmentoptionsoftenChineseMongolianmedicineHowevermechanismactionremainsunclearpresentstudyhistopathologicalbiochemicalanalyzedcellsorderdetectrelevantProteinpathwaysdetectedHistopathologicalsignificantlyimprovedinjuryreducedaspartatealaninelevelspromotedE‑cadherindecreasedα‑smoothmuscleactinSMASOX9hydroxyprolineMoreoverfounddecreaseα‑SMAstudiesinhibitedactivityratFollowingadministrationPI3Kagonist740Y‑PinhibitoryeffectPI3K/Akt//mTORblockedsuggestedcaninhibitinhibitinginhibitstargetingCarthamus tinctoriusL

Similar Articles

Cited By