control strategies at postharvest level.

Joo-Sung Kim, Tai-Yong Kim, Min-Cheol Lim, Muhammad Saiful Islam Khan
Author Information
  1. Joo-Sung Kim: Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea. ORCID
  2. Tai-Yong Kim: Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea.
  3. Min-Cheol Lim: Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea.
  4. Muhammad Saiful Islam Khan: School of Medicine, Central Asian University, 264, Milliy bog St, 111221 Tashkent, Uzbekistan.

Abstract

is highly associated with poultry and frequently causes foodborne illness worldwide. Thus, effective control measures are necessary to reduce or prevent human infections. In this review, control methods applicable at postharvest level for poultry meat during production, storage, and preparation are discussed. Drying and temperature are discussed as general strategies. Traditional strategies such as steaming, freezing, sanitizing, organic acid treatment, and ultraviolet light treatment are also discussed. Recent advances in nanotechnology using antibacterial nanoparticles and natural antimicrobial agents from plants and food byproducts are also discussed. Although advances have been made and there are various methods for preventing contamination, it is still challenging to prevent contamination in raw poultry meats with current methods. In addition, some studies have shown that large strain-to-strain variation in susceptibility to these methods exists. Therefore, more effective methods or approaches need to be developed to substantially reduce human infections caused by .

Keywords

References

  1. J Food Prot. 2009 Jun;72(6):1173-80 [PMID: 19610327]
  2. Membranes (Basel). 2022 May 20;12(5): [PMID: 35629861]
  3. Molecules. 2021 Oct 12;26(20): [PMID: 34684733]
  4. Biocontrol Sci. 2006 Dec;11(4):147-57 [PMID: 17190269]
  5. Front Microbiol. 2021 Jul 27;12:613077 [PMID: 34394014]
  6. PLoS One. 2021 May 19;16(5):e0250980 [PMID: 34010301]
  7. Appl Environ Microbiol. 2006 Jan;72(1):66-70 [PMID: 16391026]
  8. Mater Sci Eng C Mater Biol Appl. 2019 May;98:125-133 [PMID: 30813006]
  9. Front Cell Infect Microbiol. 2021 Jan 08;10:571040 [PMID: 33489930]
  10. Molecules. 2014 Dec 01;19(12):20034-53 [PMID: 25470273]
  11. Avian Dis. 2015 Jun;59(2):185-200 [PMID: 26473668]
  12. Int J Food Microbiol. 2010 Feb 28;137(2-3):147-53 [PMID: 20006911]
  13. J Food Prot. 2018 Jul;81(7):1134-1141 [PMID: 29939789]
  14. Lett Appl Microbiol. 2010 Sep;51(3):319-24 [PMID: 20666986]
  15. Antibiotics (Basel). 2020 Nov 09;9(11): [PMID: 33182474]
  16. Br Poult Sci. 2011 Feb;52(1):30-9 [PMID: 21337195]
  17. Int J Environ Res Public Health. 2018 Apr 26;15(5): [PMID: 29701663]
  18. Poult Sci. 2004 Jul;83(7):1232-9 [PMID: 15285518]
  19. Meat Sci. 2014 Sep;98(1):47-57 [PMID: 24845336]
  20. J Food Sci. 2014 Apr;79(4):M659-64 [PMID: 24621296]
  21. Poult Sci. 2023 Nov;102(11):103009 [PMID: 37672838]
  22. Crit Rev Food Sci Nutr. 2019;59(5):728-742 [PMID: 30580554]
  23. 3 Biotech. 2020 Oct;10(10):425 [PMID: 32968610]
  24. Biosci Biotechnol Biochem. 2010;74(1):31-5 [PMID: 20057155]
  25. J Food Prot. 2004 Sep;67(9):1892-903 [PMID: 15453579]
  26. Crit Rev Food Sci Nutr. 2015;55(13):1886-901 [PMID: 24754253]
  27. Front Microbiol. 2021 Aug 12;12:725087 [PMID: 34456896]
  28. Int J Food Microbiol. 2013 Apr 1;162(3):276-82 [PMID: 23454819]
  29. MMWR Surveill Summ. 2018 Jul 27;67(10):1-11 [PMID: 30048426]
  30. J Food Prot. 2010 Mar;73(3):477-82 [PMID: 20202332]
  31. Poult Sci. 2019 Sep 1;98(9):4073-4083 [PMID: 30993343]
  32. J Food Prot. 2022 Feb 1;85(2):196-202 [PMID: 34614187]
  33. Pathogens. 2023 Jul 20;12(7): [PMID: 37513805]
  34. Symp Ser Soc Appl Microbiol. 2001;(30):115S-20S [PMID: 11422566]
  35. Life (Basel). 2023 Feb 25;13(3): [PMID: 36983798]
  36. J Food Drug Anal. 2016 Oct;24(4):671-681 [PMID: 28911604]
  37. Microorganisms. 2021 May 28;9(6): [PMID: 34071496]
  38. Plants (Basel). 2022 Jan 28;11(3): [PMID: 35161347]
  39. Poult Sci. 2023 Mar;102(3):102442 [PMID: 36621098]
  40. Molecules. 2020 Nov 20;25(22): [PMID: 33233754]
  41. Int J Food Microbiol. 2013 Sep 16;166(3):450-7 [PMID: 24041998]
  42. Poult Sci. 2022 Apr;101(4):101703 [PMID: 35124442]
  43. Pol J Microbiol. 2018 Mar 9;67(1):117-120 [PMID: 30015434]
  44. Poult Sci. 2009 Mar;88(3):661-8 [PMID: 19211539]
  45. Front Microbiol. 2019 Mar 21;10:583 [PMID: 30984132]
  46. J Food Sci. 2017 Apr;82(4):1028-1036 [PMID: 28295293]
  47. Water Res. 2016 May 1;94:341-349 [PMID: 26971809]
  48. Environ Int. 2004 Mar;30(1):47-55 [PMID: 14664864]
  49. Microorganisms. 2019 Jul 30;7(8): [PMID: 31366094]
  50. Poult Sci. 2005 Oct;84(10):1648-52 [PMID: 16335135]
  51. J Food Prot. 2003 Nov;66(11):2023-31 [PMID: 14627278]
  52. Lett Appl Microbiol. 2023 Jan 23;76(1): [PMID: 36688747]
  53. Poult Sci. 2022 Jun;101(6):101842 [PMID: 35395532]
  54. Poult Sci. 2019 Mar 1;98(3):1461-1471 [PMID: 30407605]
  55. Food Sci Biotechnol. 2023 Mar 24;32(7):885-902 [PMID: 37123062]
  56. J Food Prot. 2003 Apr;66(4):652-5 [PMID: 12696690]
  57. EFSA J. 2021 Dec 13;19(12):e06971 [PMID: 36329690]
  58. J Agric Food Chem. 2007 Sep 5;55(18):7332-6 [PMID: 17685629]
  59. Int J Food Microbiol. 2009 Aug 31;134(1-2):21-8 [PMID: 19272666]
  60. Appl Environ Microbiol. 2011 Aug;77(15):5257-69 [PMID: 21642409]
  61. J Food Prot. 2021 Mar 1;84(3):449-455 [PMID: 33125047]
  62. J Food Prot. 1982 Apr;45(6):507-510 [PMID: 30866225]
  63. Int J Food Microbiol. 2007 Mar 10;114(2):195-203 [PMID: 17140687]
  64. Food Microbiol. 2006 Oct;23(7):677-83 [PMID: 16943068]
  65. PLoS One. 2018 Aug 10;13(8):e0202100 [PMID: 30096155]
  66. J Food Sci. 2011 Aug;76(6):M421-6 [PMID: 22417513]
  67. Poult Sci. 2016 Feb;95(2):306-15 [PMID: 26574037]
  68. Int J Food Microbiol. 2012 Oct 15;159(3):267-73 [PMID: 23107507]
  69. Int J Food Microbiol. 2023 Jan 16;385:110000 [PMID: 36370528]
  70. Foods. 2020 Oct 13;9(10): [PMID: 33066105]
  71. Foodborne Pathog Dis. 2021 Apr;18(4):230-242 [PMID: 33290141]
  72. Foods. 2023 Oct 21;12(20): [PMID: 37893756]
  73. Food Sci Anim Resour. 2021 Jan;41(1):1-7 [PMID: 33506212]
  74. Symp Ser Soc Appl Microbiol. 2001;(30):16S-24S [PMID: 11422557]
  75. J Food Sci. 2017 Mar;82(3):731-737 [PMID: 28178372]
  76. Poult Sci. 2019 Oct 1;98(10):5064-5073 [PMID: 31073589]
  77. J Food Prot. 2009 Mar;72(3):497-502 [PMID: 19343936]
  78. Food Microbiol. 2022 Sep;106:104035 [PMID: 35690439]
  79. Foods. 2020 Apr 24;9(4): [PMID: 32344626]
  80. J Food Prot. 2021 Apr 1;84(4):572-578 [PMID: 33180927]
  81. Lett Appl Microbiol. 2013 Sep;57(3):206-13 [PMID: 23647008]
  82. Appl Environ Microbiol. 2003 Aug;69(8):4343-51 [PMID: 12902214]
  83. Foods. 2021 Jul 31;10(8): [PMID: 34441563]
  84. Plants (Basel). 2022 Oct 25;11(21): [PMID: 36365285]
  85. J Food Prot. 2010 Feb;73(2):258-65 [PMID: 20132670]
  86. Sci Rep. 2023 Jun 10;13(1):9459 [PMID: 37301882]
  87. Int J Food Microbiol. 2014 Sep 18;187:77-82 [PMID: 25058687]
  88. J Food Prot. 2002 Oct;65(10):1545-60 [PMID: 12380738]
  89. Food Res Int. 2023 May;167:112736 [PMID: 37087219]
  90. Food Res Int. 2022 Jan;151:110865 [PMID: 34980401]
  91. Poult Sci. 2020 Nov;99(11):5977-5982 [PMID: 33142515]
  92. J Food Prot. 2021 May 1;84(5):850-856 [PMID: 33232459]
  93. Antibiotics (Basel). 2021 May 17;10(5): [PMID: 34067596]
  94. PLoS One. 2020 Sep 17;15(9):e0239312 [PMID: 32941534]
  95. PLoS One. 2012;7(12):e51800 [PMID: 23284770]
  96. Int J Food Microbiol. 1995 Aug;26(3):295-303 [PMID: 7488525]
  97. J Food Prot. 2010 Aug;73(8):1438-46 [PMID: 20819353]
  98. J Food Prot. 2001 Feb;64(2):252-4 [PMID: 11271776]
  99. Appl Environ Microbiol. 2020 Oct 28;86(22): [PMID: 32887715]
  100. PLoS Med. 2015 Dec 03;12(12):e1001921 [PMID: 26633831]
  101. Clin Microbiol Infect. 2016 Feb;22(2):103-109 [PMID: 26686808]
  102. J Appl Microbiol. 2023 Sep 5;134(9): [PMID: 37709568]
  103. Appl Environ Microbiol. 2021 Sep 10;87(19):e0109921 [PMID: 34319799]
  104. Poult Sci. 2020 May;99(5):2655-2661 [PMID: 32359602]

Word Cloud

Created with Highcharts 10.0.0methodsdiscussedpoultrycontrolstrategieseffectivereducepreventhumaninfectionspostharvestleveltreatmentalsoadvancescontaminationhighlyassociatedfrequentlycausesfoodborneillnessworldwideThusmeasuresnecessaryreviewapplicablemeatproductionstoragepreparationDryingtemperaturegeneralTraditionalsteamingfreezingsanitizingorganicacidultravioletlightRecentnanotechnologyusingantibacterialnanoparticlesnaturalantimicrobialagentsplantsfoodbyproductsAlthoughmadevariouspreventingstillchallengingrawmeatscurrentadditionstudiesshownlargestrain-to-strainvariationsusceptibilityexistsThereforeapproachesneeddevelopedsubstantiallycausedAntimicrobialsCampylobacterControlNanotechnologyPostharvest

Similar Articles

Cited By

No available data.