Epigenetic insights into Fragile X Syndrome.

Liangqun Xie, Huiying Li, MengLiang Xiao, Ningjing Chen, Xiaoxiao Zang, Yingying Liu, Hong Ye, Chaogang Tang
Author Information
  1. Liangqun Xie: The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
  2. Huiying Li: Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People's Hospital, Three Gorges University, Yichang, Hubei, China.
  3. MengLiang Xiao: Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People's Hospital, Three Gorges University, Yichang, Hubei, China.
  4. Ningjing Chen: Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People's Hospital, Three Gorges University, Yichang, Hubei, China.
  5. Xiaoxiao Zang: The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
  6. Yingying Liu: Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People's Hospital, Three Gorges University, Yichang, Hubei, China.
  7. Hong Ye: Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, Yichang Central People's Hospital, Three Gorges University, Yichang, Hubei, China.
  8. Chaogang Tang: The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.

Abstract

Fragile X Syndrome (FXS) is a genetic neurodevelopmental disorder closely associated with intellectual disability and autism spectrum disorders. The core of the disease lies in the abnormal expansion of the CGG trinucleotide repeat sequence at the 5'end of the FMR1 gene. When the repetition exceeds 200 times, it causes the silencing of the FMR1 gene, leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). Although the detailed mechanism by which the CGG repeat expansion triggers gene silencing is yet to be fully elucidated, it is known that this process does not alter the promoter region or the coding sequence of the FMR1 gene. This discovery provides a scientific basis for the potential reversal of FMR1 gene silencing through interventional approaches, thereby improving the symptoms of FXS. Epigenetics, a mechanism of genetic regulation that does not depend on changes in the DNA sequence, has become a new focus in FXS research by modulating gene expression in a reversible manner. The latest progress in molecular genetics has revealed that epigenetics plays a key role in the pathogenesis and pathophysiological processes of FXS. This article compiles the existing research findings on the role of epigenetics in Fragile X Syndrome (FXS) with the aim of deepening the understanding of the pathogenesis of FXS to identify potential targets for new therapeutic strategies.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2116251119 [PMID: 35290126]
  2. J Cardiovasc Transl Res. 2023 Jun;16(3):598-605 [PMID: 36318418]
  3. Hum Mol Genet. 2016 Sep 1;25(17):3689-3698 [PMID: 27378697]
  4. Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):25092-25103 [PMID: 32958647]
  5. Mol Cell. 2012 Mar 30;45(6):814-25 [PMID: 22387027]
  6. J Mol Biol. 2014 Jul 15;426(14):2554-66 [PMID: 24816393]
  7. Neuron. 2022 Aug 17;110(16):2588-2606.e6 [PMID: 35728596]
  8. Nucleic Acids Res. 2015 Mar 31;43(6):3100-13 [PMID: 25753662]
  9. Nat Genet. 2020 Aug;52(8):819-827 [PMID: 32514123]
  10. Int J Biol Sci. 2023 Mar 5;19(5):1543-1563 [PMID: 37056926]
  11. Noncoding RNA. 2021 Mar 11;7(1): [PMID: 33799572]
  12. Int J Mol Sci. 2022 May 12;23(10): [PMID: 35628235]
  13. FEBS Lett. 2023 Jul;597(14):1805-1817 [PMID: 37343149]
  14. Mol Psychiatry. 2022 Jan;27(1):476-489 [PMID: 33686214]
  15. Biomolecules. 2021 Feb 16;11(2): [PMID: 33669384]
  16. Pharmacogenet Genomics. 2008 Aug;18(8):738-41 [PMID: 18622267]
  17. Int J Mol Sci. 2020 Oct 14;21(20): [PMID: 33066397]
  18. Cell. 2017 Sep 7;170(6):1209-1223.e20 [PMID: 28823556]
  19. Cell Death Dis. 2019 Mar 25;10(4):287 [PMID: 30911036]
  20. Cell Stem Cell. 2007 Nov;1(5):568-77 [PMID: 18371394]
  21. Hum Mol Genet. 1998 Jan;7(1):109-13 [PMID: 9384610]
  22. Int J Mol Sci. 2023 Jun 27;24(13): [PMID: 37445892]
  23. Expert Rev Mol Med. 2021 Mar 31;23:e2 [PMID: 33787478]
  24. Hum Mol Genet. 2010 Dec 1;19(23):4634-42 [PMID: 20843831]
  25. Front Integr Neurosci. 2023 Mar 09;17:1128529 [PMID: 36969493]
  26. Mini Rev Med Chem. 2024;24(5):507-520 [PMID: 37642180]
  27. Curr Opin Struct Biol. 2020 Apr;61:50-58 [PMID: 31838293]
  28. Biochim Biophys Acta Gene Regul Mech. 2020 Jun;1863(6):194417 [PMID: 31493559]
  29. Int J Mol Sci. 2023 May 24;24(11): [PMID: 37298158]
  30. Cold Spring Harb Perspect Biol. 2022 May 27;14(5): [PMID: 34312246]
  31. Biomed Res Int. 2017;2017:3582601 [PMID: 29209628]
  32. Nat Genet. 2005 Mar;37(3):254-64 [PMID: 15696166]
  33. Epigenomics. 2010 Oct;2(5):657-69 [PMID: 21339843]
  34. PLoS Genet. 2008 Mar 07;4(3):e1000017 [PMID: 18369442]
  35. Prog Mol Biol Transl Sci. 2023;197:51-92 [PMID: 37019597]
  36. Int J Mol Sci. 2023 Nov 14;24(22): [PMID: 38003508]
  37. Nature. 2019 May;569(7754):136-140 [PMID: 30996347]
  38. Curr Neuropharmacol. 2022;20(1):158-178 [PMID: 34151764]
  39. Front Genet. 2019 Nov 20;10:1033 [PMID: 31824553]
  40. Adv Exp Med Biol. 2021;1283:1-16 [PMID: 33155134]
  41. Nat Rev Mol Cell Biol. 2022 Sep;23(9):623-640 [PMID: 35562425]
  42. Cell Biosci. 2020 May 29;10:74 [PMID: 32514332]
  43. Nat Genet. 1999 May;22(1):98-101 [PMID: 10319871]
  44. Am J Transl Res. 2020 Mar 15;12(3):813-824 [PMID: 32269714]
  45. Science. 2014 Feb 28;343(6174):1002-5 [PMID: 24578575]
  46. Mol Cancer. 2022 Jan 12;21(1):14 [PMID: 35022030]
  47. PLoS One. 2021 Nov 30;16(11):e0260005 [PMID: 34847178]
  48. Nat Cell Biol. 2004 Nov;6(11):1048-53 [PMID: 15516998]
  49. PLoS Genet. 2014 May 01;10(5):e1004318 [PMID: 24787137]
  50. Trends Genet. 2020 Dec;36(12):936-950 [PMID: 32873422]
  51. Front Cell Dev Biol. 2021 Dec 08;9:774719 [PMID: 34957106]
  52. Nat Rev Mol Cell Biol. 2022 May;23(5):329-349 [PMID: 35042977]
  53. Gene. 2023 Jul 30;875:147487 [PMID: 37211289]
  54. Annu Rev Biochem. 2009;78:273-304 [PMID: 19355820]
  55. Trends Genet. 2022 Jul;38(7):676-707 [PMID: 35504755]
  56. Mol Brain. 2020 Dec 16;13(1):167 [PMID: 33323119]
  57. Mol Autism. 2023 Apr 7;14(1):14 [PMID: 37029391]
  58. Front Pediatr. 2021 Dec 30;9:736255 [PMID: 35036394]
  59. Nat Neurosci. 2020 Mar;23(3):386-397 [PMID: 32066985]
  60. Int J Dev Biol. 2017;61(3-4-5):285-292 [PMID: 28621425]
  61. Metab Brain Dis. 2021 Aug;36(6):1119-1134 [PMID: 33881724]
  62. Annu Rev Biochem. 2020 Jun 20;89:135-158 [PMID: 31815535]
  63. Cell Stem Cell. 2007 Nov;1(5):488-9 [PMID: 18938744]
  64. Mol Cell. 2019 Apr 4;74(1):8-18 [PMID: 30951652]
  65. Hum Mol Genet. 2005 Jan 15;14(2):267-77 [PMID: 15563507]
  66. Reprod Fertil Dev. 2022 Oct;34(16):1034-1042 [PMID: 36116785]
  67. Nucleic Acids Res. 2003 Nov 1;31(21):6243-8 [PMID: 14576312]
  68. Cardiol Young. 2023 Apr;33(4):619-626 [PMID: 36094009]
  69. Genes (Basel). 2020 Mar 27;11(4): [PMID: 32230785]
  70. Adv Genet. 2020;105:95-136 [PMID: 32560791]
  71. Cell. 2023 Dec 21;186(26):5840-5858.e36 [PMID: 38134876]
  72. Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2307287120 [PMID: 37552759]
  73. Brain Sci. 2020 Sep 30;10(10): [PMID: 33008014]
  74. Cell Mol Life Sci. 2019 Oct;76(19):3745-3752 [PMID: 31165201]
  75. Hum Mol Genet. 2018 Nov 15;27(22):3936-3950 [PMID: 30107516]
  76. Genes (Basel). 2020 Jun 22;11(6): [PMID: 32580525]
  77. Behav Brain Res. 2023 Aug 24;452:114586 [PMID: 37467965]
  78. Front Genet. 2019 Mar 01;10:139 [PMID: 30881383]
  79. EMBO J. 2022 Dec 1;41(23):e110595 [PMID: 36305367]
  80. Mol Neurobiol. 2015;51(3):1053-63 [PMID: 24906954]
  81. Nat Cell Biol. 2021 Nov;23(11):1163-1175 [PMID: 34737442]
  82. Science. 2023 Jul 21;381(6655):313-319 [PMID: 37384673]
  83. Essays Biochem. 2021 Oct 27;65(4):625-639 [PMID: 33860799]
  84. Mol Hum Reprod. 2020 Oct 1;26(10):727-737 [PMID: 32777047]
  85. Front Genet. 2019 May 22;10:446 [PMID: 31191598]
  86. Genes (Basel). 2016 Aug 17;7(8): [PMID: 27548224]
  87. Science. 2004 Jan 30;303(5658):672-6 [PMID: 14704433]
  88. Nat Commun. 2023 Jan 25;14(1):405 [PMID: 36697417]
  89. Biochim Biophys Acta Gene Regul Mech. 2021 Nov-Dec;1864(11-12):194750 [PMID: 34461314]
  90. Hum Mol Genet. 1995 Nov;4(11):2103-8 [PMID: 8589687]
  91. Camb Prism Precis Med. 2024 Apr 01;2:e5 [PMID: 38699519]
  92. Nat Commun. 2018 Jun 27;9(1):2494 [PMID: 29950602]
  93. Mutat Res Rev Mutat Res. 2019 Apr - Jun;780:37-47 [PMID: 31395347]
  94. Hum Genet. 2023 Aug;142(8):1091-1111 [PMID: 36935423]
  95. Epigenetics Chromatin. 2023 May 13;16(1):18 [PMID: 37179361]
  96. Sci Rep. 2020 Jul 6;10(1):11099 [PMID: 32632326]
  97. Gene Ther. 2020 Jun;27(6):247-253 [PMID: 32203197]
  98. Nat Neurosci. 2021 Oct;24(10):1377-1391 [PMID: 34413513]
  99. Annu Rev Biochem. 2022 Jun 21;91:183-195 [PMID: 35303789]
  100. Cell. 2011 Jul 22;146(2):247-61 [PMID: 21784246]
  101. J Neurodev Disord. 2019 Dec 26;11(1):41 [PMID: 31878865]
  102. Front Genet. 2015 Jun 03;6:192 [PMID: 26089834]
  103. Epigenetics Chromatin. 2016 Mar 24;9:12 [PMID: 27014370]
  104. Hum Mol Genet. 1999 Nov;8(12):2317-23 [PMID: 10545613]
  105. Neurotherapeutics. 2021 Jan;18(1):265-283 [PMID: 33215285]
  106. Cell. 2023 Jun 8;186(12):2593-2609.e18 [PMID: 37209683]
  107. Am J Hum Genet. 2009 Nov;85(5):606-16 [PMID: 19853235]
  108. J Exp Clin Cancer Res. 2021 Nov 4;40(1):346 [PMID: 34736517]
  109. Genes (Basel). 2016 Dec 13;7(12): [PMID: 27983607]
  110. Cell Death Differ. 2023 Sep;30(9):2187-2199 [PMID: 37543710]
  111. iScience. 2024 Jan 06;27(2):108814 [PMID: 38303711]
  112. Cell Rep. 2019 Jul 23;28(4):845-854.e5 [PMID: 31340148]
  113. J Mol Biol. 2021 Jul 9;433(14):166929 [PMID: 33711345]
  114. Adv Cancer Res. 2016;131:59-95 [PMID: 27451124]
  115. Cell Signal. 2024 Jul;119:111189 [PMID: 38670475]
  116. J Mol Biol. 2024 Apr 1;436(7):168394 [PMID: 38092287]
  117. J Mol Neurosci. 2022 Aug;72(8):1622-1635 [PMID: 35543802]
  118. Nat Rev Neurosci. 2021 Apr;22(4):209-222 [PMID: 33608673]
  119. Genome Res. 2020 Oct;30(10):1393-1406 [PMID: 32963030]
  120. Pharmacol Res. 2021 Dec;174:105937 [PMID: 34648969]
  121. Psychiatr Genet. 2023 Dec 1;33(6):213-232 [PMID: 37851134]
  122. Nat Rev Mol Cell Biol. 2020 Mar;21(3):167-178 [PMID: 32005969]
  123. Cell. 2018 Feb 22;172(5):979-992.e6 [PMID: 29456084]
  124. Nucleus (Calcutta). 2021;64(3):259-270 [PMID: 34421129]
  125. Cell. 1991 May 31;65(5):905-14 [PMID: 1710175]
  126. Front Cell Dev Biol. 2022 Jul 06;10:934662 [PMID: 35880195]
  127. Methods Mol Biol. 2019;1942:3-10 [PMID: 30900171]
  128. Clin Epigenetics. 2016 Feb 05;8:15 [PMID: 26855684]
  129. Cureus. 2023 Feb 26;15(2):e35505 [PMID: 37007359]
  130. Gac Med Mex. 2020;156(1):60-66 [PMID: 32026885]

Word Cloud

Created with Highcharts 10.0.0FXSgeneFragileXFMR1SyndromesilencingsequencegeneticexpansionCGGrepeatmechanismpotentialnewresearchepigeneticsrolepathogenesisneurodevelopmentaldisordercloselyassociatedintellectualdisabilityautismspectrumdisorderscorediseaseliesabnormaltrinucleotide5'endrepetitionexceeds200timescausesleadingabsenceencodedmentalretardationprotein1FMRPAlthoughdetailedtriggersyetfullyelucidatedknownprocessalterpromoterregioncodingdiscoveryprovidesscientificbasisreversalinterventionalapproachestherebyimprovingsymptomsEpigeneticsregulationdependchangesDNAbecomefocusmodulatingexpressionreversiblemannerlatestprogressmoleculargeneticsrevealedplayskeypathophysiologicalprocessesarticlecompilesexistingfindingsaimdeepeningunderstandingidentifytargetstherapeuticstrategiesEpigeneticinsightsacetylationchromatinremodelingmethylationnon-codingRNA

Similar Articles

Cited By