Future worldwide coronavirus disease 2019 epidemic predictions by Gaidai multivariate risk evaluation method.

Oleg Gaidai, Yu Cao, Yan Zhu, Alia Ashraf, Zirui Liu, Hongchen Li
Author Information
  1. Oleg Gaidai: Department of Mechanics and Mathematics Ivan Franko Lviv State University Lviv Ukraine. ORCID
  2. Yu Cao: College of Engineering Science and Technology Shanghai Ocean University Shanghai China.
  3. Yan Zhu: School of Naval Architecture and Ocean Engineering Jiangsu University of Science and Technology Zhenjiang China.
  4. Alia Ashraf: College of Engineering Science and Technology Shanghai Ocean University Shanghai China.
  5. Zirui Liu: College of Engineering Science and Technology Shanghai Ocean University Shanghai China.
  6. Hongchen Li: College of Engineering Science and Technology Shanghai Ocean University Shanghai China.

Abstract

Accurate estimation of pandemic likelihood in every US state of interest and at any time. Coronavirus disease 2019 (COVID-19) is an infectious illness with a high potential for global dissemination and low rates of fatality and morbidity, placing some strains on national public health systems. This research intends to benchmark a novel technique, that enables hazard assessment, based on available clinical data, and dynamically observed patient numbers while taking into account pertinent territorial and temporal mapping. Multicentre, population-based, and biostatistical strategies have been utilized to process raw/unfiltered medical survey data. The expansion of extreme value statistics from the univariate to the bivariate situation meets with numerous challenges. First, the univariate extreme value types theorem cannot be directly extended to the bivariate (2D) case,-not to mention challenges with system dimensionality higher than 2D. Assessing outbreak risks of future outbreaks in any nation/region of interest. Existing bio-statistical approaches do not always have the benefits of effectively handling large regional dimensionality and cross-correlation between various regional observations. These methods deal with temporal observations of multi-regional phenomena. Apply contemporary, novel statistical/reliability techniques directly to raw/unfiltered clinical data. The current study outlines a novel bio-system hazard assessment technique that is particularly suited for multi-regional environmental, bio, and public health systems, observed over a representative period. With the use of the Gaidai multivariate hazard assessment approach, epidemic outbreak spatiotemporal risks may be properly assessed. Based on raw/unfiltered clinical survey data, the Gaidai multivariate hazard assessment approach may be applied to a variety of public health applications. The study's primary finding was an assessment of the risks of epidemic outbreaks, along with a matching confidence range. Future global COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-COV2) epidemic risks have been examined in the current study; however, COVID-19/SARS-COV2 infection transmission mechanisms have not been discussed.

Keywords

References

  1. Lancet. 2020 Feb 22;395(10224):565-574 [PMID: 32007145]
  2. Nat Med. 2021 Apr;27(4):626-631 [PMID: 33692530]
  3. J Med Virol. 2020 Jul;92(7):719-725 [PMID: 32170865]
  4. Sci Rep. 2023 Mar 22;13(1):4695 [PMID: 36949113]
  5. Environ Health Prev Med. 2012 Mar;17(2):98-108 [PMID: 21647571]
  6. PLoS One. 2010 Mar 01;5(3):e9450 [PMID: 20209164]
  7. Am J Public Health. 2020 Jul;110(7):949-951 [PMID: 32324422]
  8. Sci Rep. 2023 May 29;13(1):8670 [PMID: 37248360]
  9. Lancet. 2020 Feb 29;395(10225):689-697 [PMID: 32014114]
  10. Nature. 2020 Aug;584(7821):430-436 [PMID: 32640463]
  11. Cancer Innov. 2023 Feb 09;2(2):140-147 [PMID: 38090058]
  12. Sci Rep. 2022 Dec 7;12(1):21182 [PMID: 36476650]
  13. Accid Anal Prev. 2006 Jul;38(4):811-22 [PMID: 16546103]
  14. J Med Virol. 2020 Jul;92(7):868-882 [PMID: 32329522]
  15. Glob Chall. 2023 May 11;7(7):2300011 [PMID: 37483421]
  16. J Hyg (Lond). 1954 Sep;52(3):400-2 [PMID: 13212043]
  17. JAMA. 2020 Apr 7;323(13):1239-1242 [PMID: 32091533]
  18. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  19. Stat Methods Med Res. 2022 Sep;31(9):1757-1777 [PMID: 35786070]
  20. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  21. Sci Rep. 2023 Jan 20;13(1):1119 [PMID: 36670233]
  22. Bioinform Biol Insights. 2023 Apr 11;17:11779322231161939 [PMID: 37065993]
  23. BMC Psychiatry. 2023 Sep 22;23(1):691 [PMID: 37736716]
  24. Sci Rep. 2023 Mar 7;13(1):3817 [PMID: 36882439]
  25. BMJ. 2022 Mar 18;376:o738 [PMID: 35304409]
  26. Micromachines (Basel). 2023 Jan 20;14(2): [PMID: 36837974]
  27. Sci Rep. 2023 Sep 28;13(1):16312 [PMID: 37770505]
  28. Digit Health. 2023 Mar 14;9:20552076231162984 [PMID: 36937694]
  29. Rheumatology (Oxford). 2022 Aug 3;61(8):3161-3171 [PMID: 34698821]
  30. PLoS One. 2015 Feb 24;10(2):e0118521 [PMID: 25710503]
  31. Biosystems. 2023 Nov;233:105035 [PMID: 37739309]
  32. Curr Probl Cardiol. 2024 Mar;49(3):102391 [PMID: 38244882]
  33. Stat Med. 2002 Sep 30;21(18):2703-21 [PMID: 12228886]
  34. PLoS One. 2021 Mar 25;16(3):e0249037 [PMID: 33765088]
  35. Curr Probl Cardiol. 2023 May;48(5):101622 [PMID: 36724816]
  36. Biosystems. 2024 Jan;235:105073 [PMID: 37967809]
  37. Heliyon. 2023 Feb 06;9(2):e13533 [PMID: 36825173]
  38. F1000Res. 2023 Nov 21;11:1282 [PMID: 38116326]
  39. Euro Surveill. 2019 Mar;24(12): [PMID: 30914080]
  40. Sci Rep. 2023 Jan 6;13(1):303 [PMID: 36609490]
  41. Sci Rep. 2023 May 29;13(1):8691 [PMID: 37248258]
  42. PLoS One. 2013 Jul 24;8(7):e69305 [PMID: 23894447]
  43. JAMA. 2020 Apr 21;323(15):1502-1503 [PMID: 32105304]
  44. Euro Surveill. 2020 Aug;25(32): [PMID: 32794447]
  45. PLoS Med. 2011 Jul;8(7):e1001051 [PMID: 21750666]
  46. Heliyon. 2023 Apr 05;9(4):e15189 [PMID: 37101618]