Advances and challenges in ecological connectivity science.

Amanda R Liczner, Richard Pither, Joseph R Bennett, Jeff Bowman, Kimberly R Hall, Robert J Fletcher, Adam T Ford, Julia L Michalak, Bronwyn Rayfield, Julian Wittische, Jason Pither
Author Information
  1. Amanda R Liczner: Okanagan Institute for Biodiversity, Resilience and Ecosystem Services University of British Columbia Kelowna British Columbia Canada. ORCID
  2. Richard Pither: National Wildlife Research Centre Environment and Climate Change Canada Ottawa Ontario Canada.
  3. Joseph R Bennett: Department of Biology Carleton University Ottawa Ontario Canada.
  4. Jeff Bowman: Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Peterborough Ontario Canada.
  5. Kimberly R Hall: North America Science The Nature Conservancy Haslett Michigan USA.
  6. Robert J Fletcher: Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA.
  7. Adam T Ford: Okanagan Institute for Biodiversity, Resilience and Ecosystem Services University of British Columbia Kelowna British Columbia Canada.
  8. Julia L Michalak: School of Environmental and Forest Sciences University of Washington Seattle Washington USA.
  9. Bronwyn Rayfield: Apex Resource Management Solutions Ottawa Ontario Canada.
  10. Julian Wittische: National Museum of Natural History Luxembourg Luxembourg.
  11. Jason Pither: Okanagan Institute for Biodiversity, Resilience and Ecosystem Services University of British Columbia Kelowna British Columbia Canada.

Abstract

Maintaining and restoring ecological connectivity will be key in helping to prevent and reverse the loss of biodiversity. Fortunately, a growing body of research conducted over the last few decades has advanced our understanding of connectivity science, which will help inform evidence-based connectivity conservation actions. Increases in data availability and computing capacity have helped to dramatically increase our ability to model functional connectivity using more sophisticated models. Keeping track of these advances can be difficult, even for connectivity scientists and practitioners. In this article, we highlight some key advances from the past decade and outline many of the remaining challenges. We describe the efforts to increase the biological realism of connectivity models by, for example, isolating movement behaviors, population parameters, directional movements, and the effects of climate change. We also discuss considerations of when to model connectivity for focal or multiple species. Finally, we reflect on how to account for uncertainty and increase the transparency and reproducibility of connectivity research and discuss situations where decisions may require forgoing sophistication for more simple approaches.

Keywords

References

  1. Ecol Appl. 2019 Jun;29(4):e01873 [PMID: 30756457]
  2. J Environ Manage. 2019 Jul 1;241:439-449 [PMID: 30975576]
  3. Oecologia. 2006 Nov;150(1):161-71 [PMID: 16896772]
  4. Conserv Biol. 2022 Jun;36(3):e13835 [PMID: 34476839]
  5. Conserv Biol. 2013 Apr;27(2):407-16 [PMID: 23410037]
  6. Evol Appl. 2018 Jan 26;11(5):645-661 [PMID: 29875808]
  7. Trends Ecol Evol. 2010 Oct;25(10):547-50 [PMID: 20727614]
  8. Conserv Biol. 2017 Dec;31(6):1383-1396 [PMID: 28383758]
  9. PLoS One. 2018 Nov 7;13(11):e0206071 [PMID: 30403713]
  10. Sci Rep. 2020 Apr 22;10(1):6798 [PMID: 32321948]
  11. Neural Comput. 2009 Aug;21(8):2363-404 [PMID: 19323635]
  12. Nature. 2014 Mar 27;507(7493):492-5 [PMID: 24509712]
  13. Trends Ecol Evol. 2022 Dec;37(12):1079-1091 [PMID: 36182406]
  14. PLoS Biol. 2015 Nov 10;13(11):e1002295 [PMID: 26556502]
  15. Ecology. 2010 Apr;91(4):944-50 [PMID: 20462109]
  16. Theor Popul Biol. 2018 Sep;123:9-17 [PMID: 29729945]
  17. PLoS Comput Biol. 2017 Jun 22;13(6):e1005510 [PMID: 28640806]
  18. Mov Ecol. 2017 Oct 6;5:21 [PMID: 29043084]
  19. Proc Natl Acad Sci U S A. 2021 Apr 27;118(17): [PMID: 33875589]
  20. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7195-200 [PMID: 27298349]
  21. Mol Ecol Resour. 2012 Jul;12(4):686-96 [PMID: 22353473]
  22. Science. 2018 Jan 26;359(6374):466-469 [PMID: 29371471]
  23. Conserv Biol. 2009 Apr;23(2):368-76 [PMID: 19016821]
  24. Mol Ecol. 2006 Aug;15(9):2333-44 [PMID: 16842409]
  25. Science. 2004 May 21;304(5674):1144-7 [PMID: 15155945]
  26. Mol Ecol. 2013 Jun;22(12):3279-91 [PMID: 23718226]
  27. Glob Chang Biol. 2018 Nov;24(11):5318-5331 [PMID: 29963741]
  28. Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22274-22280 [PMID: 32848069]
  29. Ecol Appl. 2015 Jun;25(4):928-42 [PMID: 26465034]
  30. Ecol Appl. 2014 Jul;24(5):1000-14 [PMID: 25154093]
  31. PLoS One. 2023 Feb 22;18(2):e0281980 [PMID: 36812251]
  32. Front Genet. 2017 Feb 10;8:9 [PMID: 28239390]
  33. Mov Ecol. 2018 Sep 27;6:18 [PMID: 30275955]
  34. Science. 2019 May 10;364(6440):548-552 [PMID: 31023894]
  35. J Anim Ecol. 2021 Mar;90(3):574-584 [PMID: 33179773]
  36. PLoS Biol. 2020 Jul 28;18(7):e3000763 [PMID: 32722681]
  37. Ecol Appl. 2008 Jul;18(5):1200-11 [PMID: 18686581]
  38. Nat Ecol Evol. 2018 May;2(5):759-762 [PMID: 29556080]
  39. Nat Ecol Evol. 2018 Jun;2(6):929-935 [PMID: 29789547]
  40. Ecol Lett. 2022 Jun;25(6):1345-1351 [PMID: 35315961]
  41. Conserv Biol. 2010 Dec;24(6):1686-9 [PMID: 20961330]
  42. Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8591-8596 [PMID: 30082379]
  43. Ecol Appl. 2021 Sep;31(6):e02387 [PMID: 34137106]
  44. Ecol Appl. 2022 Jan;32(1):e02468 [PMID: 34614272]
  45. Ecol Appl. 2012 Jul;22(5):1701-10 [PMID: 22908724]
  46. Ecol Appl. 2009 Dec;19(8):2067-77 [PMID: 20014579]
  47. Conserv Biol. 2010 Jun;24(3):701-10 [PMID: 20067491]
  48. J Appl Ecol. 2016 Aug;53(4):1055-1065 [PMID: 27708456]
  49. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19885-90 [PMID: 18056641]
  50. PLoS One. 2013 Dec 13;8(12):e82271 [PMID: 24349241]
  51. Nat Commun. 2018 Nov 5;9(1):4621 [PMID: 30397204]
  52. Mov Ecol. 2022 Apr 8;10(1):17 [PMID: 35395833]
  53. Ecol Lett. 2020 Dec;23(12):1878-1903 [PMID: 33073921]
  54. Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2211482119 [PMID: 36574696]
  55. Ecol Evol. 2023 May 10;13(5):e9961 [PMID: 37181203]
  56. Conserv Biol. 2021 Jun;35(3):944-954 [PMID: 32975336]
  57. Ecol Lett. 2019 Oct;22(10):1680-1689 [PMID: 31347244]
  58. Conserv Biol. 2015 Feb;29(1):122-32 [PMID: 25065425]
  59. Sci Rep. 2021 Jul 21;11(1):14874 [PMID: 34290296]
  60. Mov Ecol. 2021 Dec 11;9(1):60 [PMID: 34895345]
  61. Sci Adv. 2020 Feb 05;6(6):eaax7727 [PMID: 32076640]
  62. PLoS One. 2014 Jan 30;9(1):e84135 [PMID: 24497918]
  63. Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2204434119 [PMID: 36745800]
  64. Proc Biol Sci. 2010 Jun 7;277(1688):1685-94 [PMID: 20133354]
  65. PLoS One. 2018 Jul 16;13(7):e0200303 [PMID: 30011289]
  66. Conserv Biol. 2017 Dec;31(6):1397-1408 [PMID: 28339121]
  67. Trends Ecol Evol. 2018 Dec;33(12):958-970 [PMID: 30314915]

Word Cloud

Created with Highcharts 10.0.0connectivityincreaseecologicalwillkeyresearchscienceconservationmodelmodelsadvanceschallengesbiologicalrealismmovementdirectionalclimatechangediscussMaintainingrestoringhelpingpreventreverselossbiodiversityFortunatelygrowingbodyconductedlastdecadesadvancedunderstandinghelpinformevidence-basedactionsIncreasesdataavailabilitycomputingcapacityhelpeddramaticallyabilityfunctionalusingsophisticatedKeepingtrackcandifficultevenscientistspractitionersarticlehighlightpastdecadeoutlinemanyremainingdescribeeffortsexampleisolatingbehaviorspopulationparametersmovementseffectsalsoconsiderationsfocalmultiplespeciesFinallyreflectaccountuncertaintytransparencyreproducibilitysituationsdecisionsmayrequireforgoingsophisticationsimpleapproachesAdvancescorridorsmulti���species

Similar Articles

Cited By

No available data.