Selective consistency of recurrent neural networks induced by plasticity as a mechanism of unsupervised perceptual learning.

Yujin Goto, Keiichi Kitajo
Author Information
  1. Yujin Goto: Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
  2. Keiichi Kitajo: Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan. ORCID

Abstract

Understanding the mechanism by which the brain achieves relatively consistent information processing contrary to its inherent inconsistency in activity is one of the major challenges in neuroscience. Recently, it has been reported that the consistency of neural responses to stimuli that are presented repeatedly is enhanced implicitly in an unsupervised way, and results in improved perceptual consistency. Here, we propose the term "selective consistency" to describe this input-dependent consistency and hypothesize that it will be acquired in a self-organizing manner by plasticity within the neural system. To test this, we investigated whether a reservoir-based plastic model could acquire selective consistency to repeated stimuli. We used white noise sequences randomly generated in each trial and referenced white noise sequences presented multiple times. The results showed that the plastic network was capable of acquiring selective consistency rapidly, with as little as five exposures to stimuli, even for white noise. The acquisition of selective consistency could occur independently of performance optimization, as the network's time-series prediction accuracy for referenced stimuli did not improve with repeated exposure and optimization. Furthermore, the network could only achieve selective consistency when in the region between order and chaos. These findings suggest that the neural system can acquire selective consistency in a self-organizing manner and that this may serve as a mechanism for certain types of learning.

References

  1. Nat Commun. 2017 Aug 8;8(1):179 [PMID: 28790302]
  2. J Acoust Soc Am. 2013 Jul;134(1):464-73 [PMID: 23862821]
  3. J Neurophysiol. 2021 Apr 1;125(4):1111-1120 [PMID: 33534654]
  4. Elife. 2017 Dec 27;6: [PMID: 29280733]
  5. J Neurosci. 2013 Mar 13;33(11):4672-82 [PMID: 23486941]
  6. Curr Biol. 2015 Nov 2;25(21):2823-2829 [PMID: 26455302]
  7. Phys Rev E. 2019 Dec;100(6-1):062312 [PMID: 31962477]
  8. Sci Rep. 2023 Apr 4;13(1):5532 [PMID: 37015982]
  9. Phys Rev Lett. 2004 Dec 10;93(24):244102 [PMID: 15697817]
  10. Trends Cogn Sci. 2015 Jun;19(6):322-8 [PMID: 25979849]
  11. J Autism Dev Disord. 2015 May;45(5):1176-90 [PMID: 25326820]
  12. Theory Biosci. 2012 Sep;131(3):205-13 [PMID: 22147532]
  13. PLoS Comput Biol. 2016 Jun 10;12(6):e1004967 [PMID: 27286251]
  14. Proc Biol Sci. 2014 Sep 22;281(1791):20141000 [PMID: 25100695]
  15. Science. 1995 Jun 9;268(5216):1503-6 [PMID: 7770778]
  16. Neuroimage. 2018 Oct 1;179:414-428 [PMID: 29920378]
  17. Vision Res. 2014 Jun;99:19-36 [PMID: 24075900]
  18. J Neurosci. 2013 Feb 20;33(8):3500-4 [PMID: 23426677]
  19. Neuropsychologia. 2014 Oct;63:10-8 [PMID: 25107679]
  20. J Math Biol. 1982;15(3):267-73 [PMID: 7153672]
  21. Neural Netw. 2012 Nov;35:1-9 [PMID: 22885243]
  22. Neuron. 2009 Aug 27;63(4):544-57 [PMID: 19709635]
  23. Neuroscience. 2018 Oct 1;389:133-140 [PMID: 28668487]
  24. eNeuro. 2017 Dec 20;4(6): [PMID: 29279861]
  25. Neural Comput. 2013 Mar;25(3):671-96 [PMID: 23272918]
  26. Cell Rep. 2022 May 24;39(8):110863 [PMID: 35613586]
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 2):036203 [PMID: 18851117]
  28. PLoS Comput Biol. 2011 Oct;7(10):e1002231 [PMID: 22046113]
  29. Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2218841120 [PMID: 37399421]
  30. IEEE Trans Neural Netw. 2006 May;17(3):820-4 [PMID: 16722187]
  31. Psychol Rev. 1979 Sep;47(5):415-51 [PMID: 504536]
  32. Nat Neurosci. 1999 Jan;2(1):79-87 [PMID: 10195184]
  33. Nat Rev Neurosci. 2008 Apr;9(4):292-303 [PMID: 18319728]
  34. J Neurosci. 2011 Mar 23;31(12):4496-503 [PMID: 21430150]
  35. Front Neurosci. 2021 Mar 15;15:610978 [PMID: 33790730]
  36. Science. 1998 Jun 19;280(5371):1930-4 [PMID: 9632390]
  37. Eur J Neurosci. 2020 Mar;51(5):1151-1160 [PMID: 29250827]
  38. J Acoust Soc Am. 2017 Oct;142(4):2219 [PMID: 29092589]
  39. Science. 1996 Sep 27;273(5283):1868-71 [PMID: 8791593]
  40. Phys Rev Lett. 2020 Jul 10;125(2):028101 [PMID: 32701351]
  41. Neuroscience. 2018 Oct 1;389:118-132 [PMID: 29577997]
  42. PLoS One. 2008 Jan 02;3(1):e1377 [PMID: 18167538]
  43. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E2083-92 [PMID: 25847997]
  44. Curr Biol. 2013 Jun 3;23(11):968-74 [PMID: 23664974]
  45. Phys Rev Lett. 1987 Jul 27;59(4):381-384 [PMID: 10035754]
  46. Front Syst Neurosci. 2023 Jan 12;16:999575 [PMID: 36713684]
  47. J Neurosci. 2017 Jan 4;37(1):97-109 [PMID: 28053033]
  48. Neuron. 2012 Sep 20;75(6):981-91 [PMID: 22998867]
  49. Front Psychol. 2017 Jun 19;8:999 [PMID: 28674512]
  50. Nat Neurosci. 2002 Jun;5(6):605-9 [PMID: 11992115]
  51. Neuron. 2010 May 27;66(4):610-8 [PMID: 20510864]
  52. J Acoust Soc Am. 2021 Sep;150(3):1735 [PMID: 34598638]
  53. Trends Neurosci. 2000 Mar;23(3):131-7 [PMID: 10675918]
  54. Neural Netw. 2007 Apr;20(3):323-34 [PMID: 17517489]
  55. Eur J Neurosci. 2023 Jun;57(12):2112-2135 [PMID: 37095717]
  56. Nature. 2017 Aug 17;548(7667):318-321 [PMID: 28792931]
  57. J Neurosci. 2013 Jul 10;33(28):11515-29 [PMID: 23843522]
  58. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]
  59. J Neurosci. 2003 Dec 3;23(35):11167-77 [PMID: 14657176]
  60. Neuron. 2017 Feb 22;93(4):955-970.e5 [PMID: 28190641]
  61. Cortex. 2016 Aug;81:50-63 [PMID: 27179150]
  62. Annu Rev Neurosci. 2017 Jul 25;40:479-498 [PMID: 28489490]

MeSH Term

Neuronal Plasticity
Models, Neurological
Humans
Neural Networks, Computer
Computational Biology
Unsupervised Machine Learning
Nerve Net
Brain
Learning
Perception

Word Cloud

Created with Highcharts 10.0.0consistencyselectiveneuralstimulimechanismwhitenoisepresentedunsupervisedresultsperceptualself-organizingmannerplasticitysystemplasticacquirerepeatedsequencesreferencednetworkoptimizationlearningUnderstandingbrainachievesrelativelyconsistentinformationprocessingcontraryinherentinconsistencyactivityonemajorchallengesneuroscienceRecentlyreportedresponsesrepeatedlyenhancedimplicitlywayimprovedproposeterm"selectiveconsistency"describeinput-dependenthypothesizewillacquiredwithintestinvestigatedwhetherreservoir-basedmodelusedrandomlygeneratedtrialmultipletimesshowedcapableacquiringrapidlylittlefiveexposuresevenacquisitionoccurindependentlyperformancenetwork'stime-seriespredictionaccuracyimproveexposureFurthermoreachieveregionorderchaosfindingssuggestcanmayservecertaintypesSelectiverecurrentnetworksinduced

Similar Articles

Cited By