ST-SCSR: identifying spatial domains in spatial transcriptomics data via structure correlation and self-representation.

Min Zhang, Wensheng Zhang, Xiaoke Ma
Author Information
  1. Min Zhang: School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, 710071 Xi'an Shaanxi, China.
  2. Wensheng Zhang: School of Computer Science and Cyber Engineering, GuangZhou University, No. 230 Wai Huan Xi Road,Guangzhou Higher Education Mega Center, 510006 Guangzhou Guangdong, China.
  3. Xiaoke Ma: School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, 710071 Xi'an Shaanxi, China.

Abstract

Recent advances in spatial transcriptomics (ST) enable measurements of transcriptome within intact biological tissues by preserving spatial information, offering biologists unprecedented opportunities to comprehensively understand tissue micro-environment, where spatial domains are basic units of tissues. Although great efforts are devoted to this issue, they still have many shortcomings, such as ignoring local information and relations of spatial domains, requiring alternatives to solve these problems. Here, a novel algorithm for spatial domain identification in Spatial Transcriptomics data with Structure Correlation and Self-Representation (ST-SCSR), which integrates local information, global information, and similarity of spatial domains. Specifically, ST-SCSR utilzes matrix tri-factorization to simultaneously decompose expression profiles and spatial network of spots, where expressional and spatial features of spots are fused via the shared factor matrix that interpreted as similarity of spatial domains. Furthermore, ST-SCSR learns affinity graph of spots by manipulating expressional and spatial features, where local preservation and sparse constraints are employed, thereby enhancing the quality of graph. The experimental results demonstrate that ST-SCSR not only outperforms state-of-the-art algorithms in terms of accuracy, but also identifies many potential interesting patterns.

Keywords

References

  1. Biophys Rev (Melville). 2023 Feb 07;4(1):011306 [PMID: 38505815]
  2. Nat Comput Sci. 2022 Jun;2(6):399-408 [PMID: 38177586]
  3. Nat Methods. 2018 Nov;15(11):932-935 [PMID: 30377364]
  4. Science. 2018 Jul 27;361(6400): [PMID: 29930089]
  5. Nat Methods. 2021 Aug;18(8):912-920 [PMID: 34253926]
  6. Nat Commun. 2022 Apr 1;13(1):1739 [PMID: 35365632]
  7. Nat Commun. 2024 Jan 18;15(1):600 [PMID: 38238417]
  8. Nat Commun. 2023 Mar 1;14(1):1155 [PMID: 36859400]
  9. Nat Methods. 2019 Oct;16(10):1007-1015 [PMID: 31501550]
  10. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  11. Brief Bioinform. 2023 Nov 22;25(1): [PMID: 38145948]
  12. Science. 2019 Mar 29;363(6434):1463-1467 [PMID: 30923225]
  13. Nucleic Acids Res. 2013 Jan;41(Database issue):D996-D1008 [PMID: 23193282]
  14. Endocrinology. 2008 Oct;149(10):4912-20 [PMID: 18583420]
  15. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  16. Methods Enzymol. 2016;572:1-49 [PMID: 27241748]
  17. Genome Med. 2024 Jan 12;16(1):12 [PMID: 38217035]
  18. Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11046-51 [PMID: 27625426]
  19. Nat Biotechnol. 2021 Nov;39(11):1375-1384 [PMID: 34083791]
  20. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33535230]
  21. Nat Genet. 2024 Mar;56(3):431-441 [PMID: 38413725]
  22. Clin Cancer Res. 2019 Jun 15;25(12):3702-3717 [PMID: 30850359]
  23. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  24. Genome Med. 2022 Jun 27;14(1):68 [PMID: 35761361]
  25. Science. 2022 Sep 2;377(6610):eabp9444 [PMID: 36048929]
  26. Nat Methods. 2022 Jun;19(6):662-670 [PMID: 35577954]
  27. Nat Commun. 2022 Nov 23;13(1):7203 [PMID: 36418351]
  28. Genome Biol. 2024 May 23;25(1):133 [PMID: 38783355]
  29. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  30. Nat Commun. 2023 Nov 25;14(1):7739 [PMID: 38007580]
  31. Nat Biotechnol. 2021 Mar;39(3):313-319 [PMID: 33288904]
  32. Nat Neurosci. 2021 Mar;24(3):425-436 [PMID: 33558695]
  33. J Cell Sci. 2003 Jul 15;116(Pt 14):2833-8 [PMID: 12808017]
  34. Genome Biol. 2021 Mar 8;22(1):78 [PMID: 33685491]
  35. Nat Methods. 2021 Nov;18(11):1342-1351 [PMID: 34711970]
  36. Nature. 2024 Jul;631(8019):216-223 [PMID: 38839954]
  37. Sci Rep. 2019 Mar 26;9(1):5233 [PMID: 30914743]
  38. Nucleic Acids Res. 2022 Dec 9;50(22):e131 [PMID: 36250636]
  39. J Comp Neurol. 2019 Sep 1;527(13):2122-2145 [PMID: 30311654]
  40. Bioinformatics. 2020 Jun 1;36(12):3825-3832 [PMID: 32246821]

Grants

  1. 62394330/National Natural Science Foundation of China
  2. 2022JC-38/Shaanxi Natural Science Funds for Distinguished Young Scholar

MeSH Term

Algorithms
Transcriptome
Gene Expression Profiling
Computational Biology
Humans

Word Cloud

Created with Highcharts 10.0.0spatialdomainsinformationST-SCSRtranscriptomicslocalmatrixspotstissuesmanydomaindatasimilarityexpressionalfeaturesviagraphsparseRecentadvancesSTenablemeasurementstranscriptomewithinintactbiologicalpreservingofferingbiologistsunprecedentedopportunitiescomprehensivelyunderstandtissuemicro-environmentbasicunitsAlthoughgreateffortsdevotedissuestillshortcomingsignoringrelationsrequiringalternativessolveproblemsnovelalgorithmidentificationSpatialTranscriptomicsStructureCorrelationSelf-RepresentationintegratesglobalSpecificallyutilzestri-factorizationsimultaneouslydecomposeexpressionprofilesnetworkfusedsharedfactorinterpretedFurthermorelearnsaffinitymanipulatingpreservationconstraintsemployedtherebyenhancingqualityexperimentalresultsdemonstrateoutperformsstate-of-the-artalgorithmstermsaccuracyalsoidentifiespotentialinterestingpatternsST-SCSR:identifyingstructurecorrelationself-representationjointlearningfactorizationrepresentation

Similar Articles

Cited By (1)