Essential phage component induces resistance of bacterial community.

Qianyu Hu, Liang Huang, Yaoyu Yang, Ye Xiang, Jintao Liu
Author Information
  1. Qianyu Hu: Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China. ORCID
  2. Liang Huang: Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China.
  3. Yaoyu Yang: Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China.
  4. Ye Xiang: Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China. ORCID
  5. Jintao Liu: Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China. ORCID

Abstract

Despite extensive knowledge on phage resistance at bacterium level, the resistance of bacterial communities is still not well-understood. Given its ubiquity, it is essential to understand resistance at the community level. We performed quantitative investigations on the dynamics of phage infection in biofilms. We found that the biofilms quickly developed resistance and resumed growth. Instead of mutations, the resistance was caused by unassembled phage tail fibers released by the phage-lysed bacteria. The tail fibers degraded the bacterial capsule essential for infection and induced spreading of capsule loss in the biofilm, and tuning tail fiber and capsule levels altered the resistance. Latent infections sustained in the biofilm despite resistance, allowing stable phage-bacteria coexistence. Last, we showed that the resistance exposed vulnerabilities in the biofilm. Our findings indicate that phage lysate plays important roles in shaping phage-biofilm interactions and open more dimensions for the rational design of strategies to counter bacteria with phage.

References

  1. Nat Rev Microbiol. 2016 Feb;14(2):67-76 [PMID: 26751509]
  2. Appl Microbiol Biotechnol. 2016 Mar;100(5):2141-51 [PMID: 26767986]
  3. J Antimicrob Chemother. 1982 Nov;10(5):368-72 [PMID: 6217183]
  4. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):337-342 [PMID: 29259110]
  5. Environ Microbiol. 2022 Dec;24(12):5774-5787 [PMID: 36053758]
  6. Nature. 2013 Jan 17;493(7432):429-32 [PMID: 23242138]
  7. Nat Rev Microbiol. 2022 Oct;20(10):608-620 [PMID: 35922483]
  8. Nat Commun. 2022 May 10;13(1):2561 [PMID: 35538097]
  9. Nat Rev Microbiol. 2018 Dec;16(12):760-773 [PMID: 30104690]
  10. Commun Biol. 2019 Nov 4;2:405 [PMID: 31701033]
  11. Nat Rev Microbiol. 2020 Oct;18(10):571-586 [PMID: 32533131]
  12. Nat Microbiol. 2022 Oct;7(10):1568-1579 [PMID: 36123438]
  13. Microbiol Spectr. 2021 Sep 3;9(1):e0102321 [PMID: 34431721]
  14. Science. 2020 Aug 28;369(6507):1077-1084 [PMID: 32855333]
  15. mBio. 2013 Feb 19;4(1):e00362-12 [PMID: 23422409]
  16. Nat Rev Microbiol. 2013 Oct;11(10):675-87 [PMID: 23979432]
  17. Front Microbiol. 2020 Jan 10;10:2949 [PMID: 31998258]
  18. Cell. 2006 Sep 8;126(5):847-50 [PMID: 16959564]
  19. Nat Rev Microbiol. 2019 Jun;17(6):371-382 [PMID: 30944413]
  20. PeerJ. 2016 Jul 26;4:e2261 [PMID: 27547567]
  21. Cell Host Microbe. 2019 Feb 13;25(2):219-232 [PMID: 30763536]
  22. Viruses. 2022 Nov 12;14(11): [PMID: 36423111]
  23. Science. 2018 Mar 2;359(6379): [PMID: 29371424]
  24. Cell Host Microbe. 2020 Sep 9;28(3):390-401.e5 [PMID: 32615090]
  25. Nat Microbiol. 2018 Jan;3(1):26-31 [PMID: 29085075]
  26. Nat Microbiol. 2023 Mar;8(3):387-399 [PMID: 36717719]
  27. Electrophoresis. 1990 Jan;11(1):23-8 [PMID: 1690641]
  28. Nat Rev Microbiol. 2023 Feb;21(2):70-86 [PMID: 36127518]
  29. Nat Rev Microbiol. 2022 Jan;20(1):49-62 [PMID: 34373631]
  30. Appl Environ Microbiol. 2018 Nov 15;84(23): [PMID: 30217854]
  31. Annu Rev Virol. 2023 Sep 29;10(1):503-524 [PMID: 37268007]
  32. Nature. 2024 Jan;625(7994):352-359 [PMID: 37992756]
  33. mBio. 2017 Apr 4;8(2): [PMID: 28377527]
  34. mBio. 2018 Aug 7;9(4): [PMID: 30087173]
  35. Nat Rev Microbiol. 2009 Nov;7(11):828-36 [PMID: 19834481]
  36. Cell. 2023 Jan 5;186(1):17-31 [PMID: 36608652]
  37. mBio. 2015 Jun 16;6(3):e00627 [PMID: 26081633]
  38. Nat Rev Microbiol. 2010 Aug;8(8):578-92 [PMID: 20581859]
  39. Virology. 1979 Apr 15;94(1):95-118 [PMID: 375578]
  40. Front Microbiol. 2019 May 28;10:1189 [PMID: 31191500]
  41. Biomacromolecules. 2019 Oct 14;20(10):3842-3854 [PMID: 31478651]
  42. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202 [PMID: 17592147]
  43. PLoS Biol. 2022 Dec 22;20(12):e3001913 [PMID: 36548227]
  44. Science. 1999 May 21;284(5418):1318-22 [PMID: 10334980]
  45. Nat Rev Microbiol. 2010 May;8(5):317-27 [PMID: 20348932]
  46. J Virol Methods. 2014 Feb;196:86-92 [PMID: 24211298]
  47. Nat Rev Microbiol. 2022 Oct;20(10):621-635 [PMID: 35115704]
  48. Appl Environ Microbiol. 2005 Aug;71(8):4872-4 [PMID: 16085886]
  49. Viruses. 2011 Mar;3(3):172-203 [PMID: 21994726]
  50. Nat Chem Biol. 2023 Aug;19(8):940-950 [PMID: 37055614]
  51. Curr Opin Microbiol. 2017 Oct;39:48-56 [PMID: 28964986]

MeSH Term

Biofilms
Bacteriophages
Klebsiella pneumoniae
Bacterial Capsules
Mutation

Word Cloud

Created with Highcharts 10.0.0resistancephagebacterialtailcapsulebiofilmlevelessentialcommunityinfectionbiofilmsfibersbacteriaDespiteextensiveknowledgebacteriumcommunitiesstillwell-understoodGivenubiquityunderstandperformedquantitativeinvestigationsdynamicsfoundquicklydevelopedresumedgrowthInsteadmutationscausedunassembledreleasedphage-lyseddegradedinducedspreadinglosstuningfiberlevelsalteredLatentinfectionssustaineddespiteallowingstablephage-bacteriacoexistenceLastshowedexposedvulnerabilitiesfindingsindicatelysateplaysimportantrolesshapingphage-biofilminteractionsopendimensionsrationaldesignstrategiescounterEssentialcomponentinduces

Similar Articles

Cited By