Rafia Ahsan: Department of Electrical and Computer Engineering, Medical Image Processing Research Group (MIPRG), COMSATS University Islamabad, Islamabad, Pakistan.
Iram Shahzadi: OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universit��t Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
Faisal Najeeb: Department of Electrical and Computer Engineering, Medical Image Processing Research Group (MIPRG), COMSATS University Islamabad, Islamabad, Pakistan. faisal.najeeb@comsats.edu.pk. ORCID
Hammad Omer: Department of Electrical and Computer Engineering, Medical Image Processing Research Group (MIPRG), COMSATS University Islamabad, Islamabad, Pakistan.
OBJECTIVES: Brain tumor detection, classification and segmentation are challenging due to the heterogeneous nature of brain tumors. Different deep learning-based algorithms are available for object detection; however, the performance of detection algorithms on brain tumor data has not been widely explored. Therefore, we aim to compare different object detection algorithms (Faster R-CNN, YOLO & SSD) for brain tumor detection on MRI data. Furthermore, the best-performing detection network is paired with a 2D U-Net for pixel-wise segmentation of abnormal tumor cells. MATERIALS AND METHODS: The proposed model was evaluated on the Brain Tumor Figshare (BTF) dataset, and the best-performing detection network cascaded with 2D U-Net for pixel-wise segmentation of tumors. The best-performing detection network was also fine-tuned on BRATS 2018 data to detect and classify the glioma tumor. RESULTS: For the detection of three tumor types, YOLOv5 achieved the highest mAP of 89.5% on test data compared to other networks. For segmentation, YOLOv5 combined with 2D U-Net achieved a higher DSC compared to the 2D U-Net alone (DSC: YOLOv5���+���2D U-Net���=���88.1%; 2D U-Net���=���80.5%). The proposed method was compared with the existing detection and segmentation network i.e. Mask R-CNN and achieved a higher mAP (YOLOv5���+���2D U-Net���=���89.5%; Mask R-CNN���=���67%) and DSC (YOLOv5���+���2D U-Net���=���88.1%; Mask R-CNN���=���44.2%). CONCLUSION: In this work, we propose a deep-learning-based method for multi-class tumor detection, classification and segmentation that combines YOLOv5 with 2D U-Net. The results show that the proposed method not only detects different types of brain tumors accurately but also delineates the tumor region precisely within the detected bounding box.
Swati ZNK et al (2019) Content-based brain tumor retrieval for MR images using transfer learning. IEEE Access 7:17809���17822. https://doi.org/10.1109/ACCESS.2019.2892455
[DOI: 10.1109/ACCESS.2019.2892455]
Selvapandian A, Manivannan K (2018) Fusion based Glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Progr Biomed 166:33���38. https://doi.org/10.1016/j.cmpb.2018.09.006
[DOI: 10.1016/j.cmpb.2018.09.006]
Lather M, Singh P (2020) Investigating brain tumor segmentation and detection techniques. Proc Comput Sci 167(2019):121���130. https://doi.org/10.1016/j.procs.2020.03.189
[DOI: 10.1016/j.procs.2020.03.189]
Cheng J et al (2015) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10(10):1���13. https://doi.org/10.1371/journal.pone.0140381
[DOI: 10.1371/journal.pone.0140381]
Girshick R (2015) Fast R-CNN. Proc IEEE Int Conf Comput Vis 2015:1440���1448. https://doi.org/10.1109/ICCV.2015.169
[DOI: 10.1109/ICCV.2015.169]
Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137���1149. https://doi.org/10.1109/TPAMI.2016.2577031
[DOI: 10.1109/TPAMI.2016.2577031]
Doll P, Girshick R, Ai F (2017) Mask R-CNN. IEEE Int Conf Comput Vis 2:2
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn 2016:779���788. https://doi.org/10.1109/CVPR.2016.91
[DOI: 10.1109/CVPR.2016.91]
Impiombato D et al (2015) SSD: single shot MultiBox detector wei. Nucl Instrum Methods Phys Res A 794:185���192
[DOI: 10.1016/j.nima.2015.05.028]
Ezhilarasi R, Varalakshmi P (2019) Tumor detection in the brain using faster R-CNN. Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018, pp. 388���392. https://doi.org/10.1109/I-SMAC.2018.8653705 .
Av��ar E, Sal��in K (2019) Detection and classification of brain tumours from MRI images using faster R-CNN. Tehni��ki glasnik 13(4):337���342. https://doi.org/10.31803/tg-20190712095507
[DOI: 10.31803/tg-20190712095507]
Bhanothu Y, Kamalakannan A, Rajamanickam G (2020) Detection and classification of brain tumor in MRI images using deep convolutional network. 2020 6th International Conference on Advanced Computing and Communication Systems, ICACCS 2020, pp. 248���252, https://doi.org/10.1109/ICACCS48705.2020.9074375 .
Sahaai MB, Jothilakshmi GR (1921) Hierarchical based tumor segmentation by detection using deep learning approach. J Phys Conf Ser 1:2021. https://doi.org/10.1088/1742-6596/1921/1/012080
[DOI: 10.1088/1742-6596/1921/1/012080]
Kaldera HNTK, Gunasekara SR, DIssanayake MB (2019) Brain tumor classification and segmentation using faster R-CNN. 2019 Advances in Science and Engineering Technology International Conferences, ASET 2019, pp. 1���6, https://doi.org/10.1109/ICASET.2019.8714263
Masood M, Nazir T, Nawaz M, Javed A, Iqbal M, Mehmood A (2021) Brain tumor localization and segmentation using mask RCNN. Front Comput Sci. https://doi.org/10.1007/s11704-020-0105-y
[DOI: 10.1007/s11704-020-0105-y]
Yadav N, Binay U (2017) Comparative study of object detection algorithms. Int Res J Eng Technol 2:586���591
Nepal U, Eslamiat H (2022) Comparing YOLOv3, YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs. Sensors 22:2. https://doi.org/10.3390/s22020464
[DOI: 10.3390/s22020464]
Xu R, Lin H, Lu K, Cao L, Liu Y (2021) A forest fire detection system based on ensemble learning. Forests 12(2):1���17. https://doi.org/10.3390/f12020217
[DOI: 10.3390/f12020217]
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Available: http://arxiv.org/abs/1505.04597
Bakas S et al (2017) Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Sci Data. https://doi.org/10.1038/sdata.2017.117
[DOI: 10.1038/sdata.2017.117]
Menze BH et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993���2024. https://doi.org/10.1109/TMI.2014.2377694
[DOI: 10.1109/TMI.2014.2377694]
Bakas S et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. [Online]. Available: http://arxiv.org/abs/1811.02629
Myronenko A (2019) 3D MRI brain tumor segmentation using autoencoder regularization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11384 LNCS, pp. 311���320, https://doi.org/10.1007/978-3-030-11726-9_28 .
Bochkovskiy A, Wang CY, Liao HYM (2020) YOLOv4: optimal speed and accuracy of object detection
FOU Analysis Group. ���FMRIB Software Library(FSL),��� https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL .
Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143���155. https://doi.org/10.1002/hbm.10062
[DOI: 10.1002/hbm.10062]
Bogdanov A, Mazzanti ML (2011) Molecular magnetic resonance contrast agents for the detection of cancer: past and present. Semin Oncol 38(1):42���54. https://doi.org/10.1053/j.seminoncol.2010.11.002
[DOI: 10.1053/j.seminoncol.2010.11.002]
Nti IK, Nyarko-Boateng O, Aning J (2021) Performance of machine learning algorithms with different K values in K-fold crossvalidation. Int J Inf Technol Comput Sci 13(6):61���71. https://doi.org/10.5815/ijitcs.2021.06.05
[DOI: 10.5815/ijitcs.2021.06.05]
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1���14, 2015
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recogn 2016:770���778. https://doi.org/10.1109/CVPR.2016.90
[DOI: 10.1109/CVPR.2016.90]
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. Proceedings 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 2261���2269, https://doi.org/10.1109/CVPR.2017.243
A. F. Gad, ���Mean Average Precision,��� 2020.
Tiwari A, Srivastava S, Pant M (2020) Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recognit Lett 131:244���260. https://doi.org/10.1016/j.patrec.2019.11.020
[DOI: 10.1016/j.patrec.2019.11.020]
���Stratified Sampling in Machine Learning,��� 2022.