Modelling the age distribution of longevity leaders.

Csaba Kiss, László Németh, Bálint Vető
Author Information
  1. Csaba Kiss: Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
  2. László Németh: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117, Berlin, Germany. nemeth@wias-berlin.de.
  3. Bálint Vető: Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.

Abstract

Human longevity leaders with remarkably long lifespan play a crucial role in the advancement of longevity research. In this paper, we propose a stochastic model to describe the evolution of the age of the oldest person in the world by a Markov process, in which we assume that the births of the individuals follow a Poisson process with increasing intensity, lifespans of individuals are independent and can be characterized by a gamma-Gompertz distribution with time-dependent parameters. We utilize a dataset of the world's oldest person title holders since 1955, and we compute the maximum likelihood estimate for the parameters iteratively by numerical integration. Based on our preliminary estimates, the model provides a good fit to the data and shows that the age of the oldest person alive increases over time in the future. The estimated parameters enable us to describe the distribution of the age of the record holder process at a future time point.

Keywords

References

  1. PLoS Biol. 2018 Dec 20;16(12):e2006776 [PMID: 30571676]
  2. Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666): [PMID: 25750242]
  3. Science. 2018 Jun 29;360(6396):1459-1461 [PMID: 29954979]
  4. N Am Actuar J. 2011;15(3):432-447 [PMID: 22308064]
  5. Science. 2002 May 10;296(5570):1029-31 [PMID: 12004104]
  6. Biometrics. 1986 Dec;42(4):693-734 [PMID: 3814721]
  7. PLoS One. 2021 Jul 14;16(7):e0253940 [PMID: 34260647]
  8. J Intern Med. 2017 Aug;282(2):156-163 [PMID: 28470872]
  9. Demography. 2010 May;47(2):299-312 [PMID: 20608098]
  10. Gerontology. 2017;63(5):432-434 [PMID: 28511176]
  11. Rejuvenation Res. 2020 Feb;23(1):17-18 [PMID: 31578937]
  12. PLoS One. 2018 Jun 4;13(6):e0198485 [PMID: 29864166]
  13. J Gerontol A Biol Sci Med Sci. 2016 Aug;71(8):1014-21 [PMID: 26362439]
  14. Theor Popul Biol. 2022 Apr;144:24-36 [PMID: 35101435]
  15. Proc Natl Acad Sci U S A. 2021 Mar 2;118(9): [PMID: 33571137]

Grants

  1. FK142124/National Research, Development and Innovation Office
  2. FK142124/National Research, Development and Innovation Office
  3. 460135501, NFDI 29/1/Deutsche Forschungsgemeinschaft

MeSH Term

Longevity
Humans
Markov Chains
Age Distribution
Aged, 80 and over

Word Cloud

Created with Highcharts 10.0.0longevityageoldestpersondistributionmodelprocessparametersHumanleaderslifespandescribeindividualstimefutureremarkablylongplaycrucialroleadvancementresearchpaperproposestochasticevolutionworldMarkovassumebirthsfollowPoissonincreasingintensitylifespansindependentcancharacterizedgamma-Gompertztime-dependentutilizedatasetworld'stitleholderssince1955computemaximumlikelihoodestimateiterativelynumericalintegrationBasedpreliminaryestimatesprovidesgoodfitdatashowsaliveincreasesestimatedenableusrecordholderpointModellingGamma–GompertzStochasticWorld’s

Similar Articles

Cited By

No available data.