IMT-P8 potentiates Gram-positive specific antibiotics in intrinsically resistant Gram-negative bacteria.

Vidhu Singh, Hemraj Nandanwar
Author Information
  1. Vidhu Singh: Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India. ORCID
  2. Hemraj Nandanwar: Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India. ORCID

Abstract

Gram-negative bacteria (GNB) pose a major global public health challenge as they exhibit a remarkable level of resistance to antibiotics. One of the factors responsible for promoting resistance against a wide range of antibiotics is the outer membrane (OM) of Gram-negative bacteria. The OM acts as a barrier that prevents the entry of numerous antibiotics by reducing their influx (due to membrane impermeability) and enhancing their efflux (with the help of efflux pumps). Our study focuses on analyzing the effect of IMT-P8, a cell-penetrating peptide (CPP), to enhance the influx of various Gram-positive specific antibiotics in multi-drug resistant Gram-negative pathogens. In the mechanistic experiments, IMT-P8 permeabilizes the OM at the same concentrations at which it enhances the activity of various antibiotics against GNB. Cytoplasmic membrane permeabilization was also observed at these concentrations, indicating that IMT-P8 acts on both the outer and cytoplasmic membranes. IMT-P8 interferes with the intrinsic resistance mechanism of GNB and has the potential to make Gram-positive specific antibiotics effective against GNB. IMT-P8 extends the post-antibiotic effect and in combination with antibiotics shows anti-persister activity. The IMT-P8/fusidic acid combination is effective in eliminating intracellular pathogens. IMT-P8 with negligible toxicity displayed good efficacy in murine lung and thigh infection models. Based on these findings, IMT-P8 is a potential antibiotic adjuvant to treat Gram-negative bacterial infections that pose a health hazard.

Keywords

References

  1. Nature. 2018 Sep;561(7722):189-194 [PMID: 30209367]
  2. J Biomed Sci. 2020 Aug 6;27(1):85 [PMID: 32762680]
  3. Nihon Rinsho. 1992 May;50(5):1165-72 [PMID: 1507445]
  4. Antimicrob Agents Chemother. 2006 Mar;50(3):841-51 [PMID: 16495241]
  5. PLoS One. 2014 Jan 21;9(1):e86364 [PMID: 24466055]
  6. Chem Biol. 2013 Sep 19;20(9):1168-78 [PMID: 23972939]
  7. Clin Infect Dis. 2009 Jan 1;48(1):1-12 [PMID: 19035777]
  8. J Antimicrob Chemother. 1983 May;11(5):427-33 [PMID: 6874629]
  9. Microbiol Mol Biol Rev. 2020 Nov 11;84(4): [PMID: 33177189]
  10. J Transl Med. 2013 Mar 22;11:74 [PMID: 23517638]
  11. Biochemistry. 1999 Jun 1;38(22):7235-42 [PMID: 10353835]
  12. J Antimicrob Chemother. 2011 Sep;66(9):1963-71 [PMID: 21685488]
  13. Biochim Biophys Acta Biomembr. 2019 Sep 1;1861(9):1533-1545 [PMID: 31283917]
  14. Microbiol Rev. 1992 Sep;56(3):395-411 [PMID: 1406489]
  15. Diagn Microbiol Infect Dis. 2009 Apr;63(4):455-8 [PMID: 19302929]
  16. Int J Med Microbiol. 2013 Aug;303(6-7):287-92 [PMID: 23499305]
  17. J Antimicrob Chemother. 2014 Jul;69(7):1844-55 [PMID: 24627312]
  18. Antimicrob Agents Chemother. 2002 Nov;46(11):3585-90 [PMID: 12384369]
  19. Appl Microbiol Biotechnol. 2016 May;100(9):4073-83 [PMID: 26837216]
  20. Sci Rep. 2017 Dec 15;7(1):17629 [PMID: 29247166]
  21. ACS Infect Dis. 2022 Sep 9;8(9):1731-1757 [PMID: 35946799]
  22. JAMA. 2020 Mar 03;323(9):844-853 [PMID: 32125404]
  23. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  24. Eur J Clin Microbiol Infect Dis. 1991 Feb;10(2):100-6 [PMID: 1864271]
  25. Nat Rev Drug Discov. 2013 May;12(5):371-87 [PMID: 23629505]
  26. Nature. 1983 Jun 9-15;303(5917):526-8 [PMID: 6406904]
  27. Nat Rev Drug Discov. 2022 Nov;21(11):793-794 [PMID: 34759309]
  28. Antimicrob Agents Chemother. 1984 Jun;25(6):701-5 [PMID: 6331296]
  29. Microbiol Spectr. 2023 Sep 27;:e0487622 [PMID: 37754560]
  30. Bio Protoc. 2020 Mar 05;10(5):e3548 [PMID: 33659522]
  31. PLoS One. 2013 Dec 31;8(12):e84361 [PMID: 24391945]
  32. J Vis Exp. 2011 Jan 30;(47): [PMID: 21307833]
  33. Eur J Pharm Biopharm. 2015 Jan;89:93-106 [PMID: 25459448]
  34. Eur J Hosp Pharm. 2019 May;26(3):175-177 [PMID: 31428328]
  35. Antimicrob Agents Chemother. 2011 Mar;55(3):997-1007 [PMID: 21189348]
  36. mBio. 2020 Sep 22;11(5): [PMID: 32963002]
  37. Phytomedicine. 2008 Aug;15(8):639-52 [PMID: 18599280]
  38. Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656 [PMID: 14665678]
  39. Molecules. 2019 Jan 11;24(2): [PMID: 30641878]
  40. Clin Microbiol Rev. 2018 Mar 14;31(2): [PMID: 29540434]
  41. Antimicrob Agents Chemother. 2016 Jul 22;60(8):4630-7 [PMID: 27185802]
  42. Antimicrob Agents Chemother. 2010 Apr;54(4):1393-403 [PMID: 20065048]
  43. Antimicrob Agents Chemother. 1989 Nov;33(11):1831-6 [PMID: 2692513]
  44. PLoS One. 2015 Oct 14;10(10):e0139652 [PMID: 26465925]
  45. Nat Microbiol. 2020 Aug;5(8):1040-1050 [PMID: 32424338]
  46. Toxicol Int. 2013 Sep;20(3):224-6 [PMID: 24403732]
  47. Nature. 2016 Jan 21;529(7586):336-43 [PMID: 26791724]
  48. Antimicrob Agents Chemother. 1984 Oct;26(4):546-51 [PMID: 6440475]
  49. Langmuir. 2019 Dec 24;35(51):16935-16943 [PMID: 31742409]
  50. Cells. 2020 Oct 21;9(10): [PMID: 33096791]
  51. Biomed Res Int. 2015;2015:679109 [PMID: 25664322]
  52. Br J Pharmacol. 2017 Jul;174(14):2159-2160 [PMID: 28463394]

MeSH Term

Anti-Bacterial Agents
Animals
Mice
Gram-Negative Bacteria
Microbial Sensitivity Tests
Drug Resistance, Multiple, Bacterial
Cell-Penetrating Peptides
Drug Synergism
Gram-Positive Bacteria
Gram-Negative Bacterial Infections
Cell Membrane Permeability
Bacterial Outer Membrane
Female

Chemicals

Anti-Bacterial Agents
Cell-Penetrating Peptides

Word Cloud

Created with Highcharts 10.0.0antibioticsIMT-P8Gram-negativebacteriaGNBresistancemembraneOMGram-positivespecificcombinationposehealthouteractsinfluxeffluxeffectcell-penetratingpeptidevariousmulti-drugresistantpathogensconcentrationsactivitypermeabilizationpotentialeffectiveantibioticmajorglobalpublicchallengeexhibitremarkablelevelOnefactorsresponsiblepromotingwiderangebarrierpreventsentrynumerousreducingdueimpermeabilityenhancinghelppumpsstudyfocusesanalyzingCPPenhancemechanisticexperimentspermeabilizesenhancesCytoplasmicalsoobservedindicatingcytoplasmicmembranesinterferesintrinsicmechanismmakeextendspost-antibioticshowsanti-persisterIMT-P8/fusidicacideliminatingintracellularnegligibletoxicitydisplayedgoodefficacymurinelungthighinfectionmodelsBasedfindingsadjuvanttreatbacterialinfectionshazardpotentiatesintrinsicallyAbaumanniipotentiationtherapy

Similar Articles

Cited By