Decomposition and decoupling analysis between economic growth and carbon emissions at the regional level: Evidence from six central provinces, China.

Wensheng Wang, Xuanyi Zhu, Xiaoxuan Kao, Hui Wei
Author Information
  1. Wensheng Wang: School of Management, China University of Mining and Technology-Beijing, Beijing, China.
  2. Xuanyi Zhu: School of Management, China University of Mining and Technology-Beijing, Beijing, China. ORCID
  3. Xiaoxuan Kao: School of Management, China University of Mining and Technology-Beijing, Beijing, China.
  4. Hui Wei: School of Management, China University of Mining and Technology-Beijing, Beijing, China.

Abstract

As the six central provinces account for 23% of total national carbon emissions (CE), research into the decoupling status of their economic growth (EG) and carbon emissions is critical to achieving the Dual Carbon Goals and the Rise of Central China Plan. This research initially examines the decoupling status between CE and EG using the Tapio decoupling model, based on energy consumption (EC) dataset from six central provinces in China between 2000 and 2019. The decoupling index (DI) is then divided into five decoupling drivers using the LMDI method. Finally, an enhanced STIRPAT model is used to examine the decoupling status of CE and EG in the six central provinces from 2020 to 2040. The research findings are: (1) The six central provinces exhibited a stable decoupling status between 2000 and 2019. The DI of the six central provinces ranged from -1.2 to 3.4. (2) The decoupling performance is influenced mainly by the inhibitory effect of economic development (GI) and the promoting effect of energy intensity (EI). The GI consistently maintains an impact value of around 0.9. EI performance varies widely across provinces. (3) From 2020 to 2040, Anhui, Hubei, Henan, and Hunan show significantly strong decoupling indices distributed between -2.21 and -0.07 in all three scenarios. It is important to note that Shanxi and Jiangxi provinces will experience a Reverse Decoupling phenomenon. These findings are helpful in developing regionally coordinated development policies and strategies for reducing CE.

References

  1. Environ Sci Pollut Res Int. 2023 Feb;30(7):19477-19494 [PMID: 36239894]
  2. Environ Sci Pollut Res Int. 2023 Aug;30(38):88508-88523 [PMID: 37438505]
  3. Environ Sci Pollut Res Int. 2021 Dec;28(45):64719-64738 [PMID: 34312759]
  4. Environ Sci Pollut Res Int. 2023 Apr;30(18):52679-52691 [PMID: 36847941]
  5. Environ Sci Pollut Res Int. 2019 May;26(14):14616-14626 [PMID: 30877535]
  6. Environ Sci Pollut Res Int. 2023 Apr;30(17):50412-50430 [PMID: 36792860]
  7. Sci Total Environ. 2022 Feb 25;809:151098 [PMID: 34743880]
  8. Sci Total Environ. 2019 Mar 15;656:576-588 [PMID: 30529962]
  9. Science. 1971 Mar 26;171(3977):1212-7 [PMID: 5545198]
  10. Environ Sci Pollut Res Int. 2023 Jan;30(3):8154-8169 [PMID: 36053415]
  11. Environ Sci Pollut Res Int. 2019 Jul;26(21):21736-21749 [PMID: 31134541]
  12. Sci Total Environ. 2020 Mar 1;706:135716 [PMID: 31831236]
  13. Environ Sci Pollut Res Int. 2020 Jun;27(17):20889-20903 [PMID: 32248423]
  14. Environ Sci Pollut Res Int. 2021 Dec;28(46):65200-65215 [PMID: 34231151]
  15. J Environ Sci (China). 2021 Apr;102:85-98 [PMID: 33637268]

MeSH Term

China
Economic Development
Carbon
Carbon Dioxide
Models, Theoretical

Chemicals

Carbon
Carbon Dioxide

Word Cloud

Created with Highcharts 10.0.0decouplingprovincessixcentralCEstatuscarbonemissionsresearcheconomicEGChinagrowthusingmodelenergy20002019DI20202040findings23performanceeffectdevelopmentGIEIaccount23%totalnationalcriticalachievingDualCarbonGoalsRiseCentralPlaninitiallyexaminesTapiobasedconsumptionECdatasetindexdividedfivedriversLMDImethodFinallyenhancedSTIRPATusedexamineare:1exhibitedstableranged-14influencedmainlyinhibitorypromotingintensityconsistentlymaintainsimpactvaluearound09varieswidelyacrossAnhuiHubeiHenanHunanshowsignificantlystrongindicesdistributed-221-007threescenariosimportantnoteShanxiJiangxiwillexperienceReverseDecouplingphenomenonhelpfuldevelopingregionallycoordinatedpoliciesstrategiesreducingDecompositionanalysisregionallevel:Evidence

Similar Articles

Cited By