NLRP1-dependent activation of Gasdermin D in neutrophils controls cutaneous leishmaniasis.

Michiel Goris, Katiuska Passelli, Sanam Peyvandi, Miriam Díaz-Varela, Oaklyne Billion, Borja Prat-Luri, Benjamin Demarco, Chantal Desponds, Manon Termote, Eva Iniguez, Somaditya Dey, Bernard Malissen, Shaden Kamhawi, Benjamin P Hurrell, Petr Broz, Fabienne Tacchini-Cottier
Author Information
  1. Michiel Goris: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  2. Katiuska Passelli: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  3. Sanam Peyvandi: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  4. Miriam Díaz-Varela: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  5. Oaklyne Billion: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  6. Borja Prat-Luri: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  7. Benjamin Demarco: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  8. Chantal Desponds: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  9. Manon Termote: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  10. Eva Iniguez: Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America.
  11. Somaditya Dey: Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America.
  12. Bernard Malissen: INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France.
  13. Shaden Kamhawi: Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America.
  14. Benjamin P Hurrell: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  15. Petr Broz: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
  16. Fabienne Tacchini-Cottier: Department of Immunobiology, University of Lausanne, Epalinges, Switzerland. ORCID

Abstract

Intracellular pathogens that replicate in host myeloid cells have devised ways to inhibit the cell's killing machinery. Pyroptosis is one of the host strategies used to reduce the pathogen replicating niche and thereby control its expansion. The intracellular Leishmania parasites can survive and use neutrophils as a silent entry niche, favoring subsequent parasite dissemination into the host. Here, we show that Leishmania mexicana induces NLRP1- and caspase-1-dependent Gasdermin D (GSDMD)-mediated pyroptosis in neutrophils, a process critical to control the parasite-induced pathology. In the absence of GSDMD, we observe an increased number of infected dermal neutrophils two days post-infection. Using adoptive neutrophil transfer in neutropenic mice, we show that pyroptosis contributes to the regulation of the neutrophil niche early after infection. The critical role of neutrophil pyroptosis and its positive influence on the regulation of the disease outcome was further demonstrated following infection of mice with neutrophil-specific deletion of GSDMD. Thus, our study establishes neutrophil pyroptosis as a critical regulator of leishmaniasis pathology.

References

  1. PLoS Pathog. 2017 Feb 13;13(2):e1006196 [PMID: 28192528]
  2. Science. 2022 Jul 15;377(6603):328-335 [PMID: 35857590]
  3. Nat Genet. 2006 Feb;38(2):240-4 [PMID: 16429160]
  4. Cell Rep. 2020 Oct 27;33(4):108317 [PMID: 33113362]
  5. Front Cell Infect Microbiol. 2014 May 28;4:67 [PMID: 24904841]
  6. Eur J Immunol. 2007 Dec;37(12):3424-34 [PMID: 18034422]
  7. Sci Adv. 2021 Oct 22;7(43):eabi9471 [PMID: 34678072]
  8. Front Immunol. 2021 Mar 01;12:649348 [PMID: 33732265]
  9. Cell Immunol. 2019 Jul;341:103920 [PMID: 31078283]
  10. PLoS Pathog. 2020 Nov 2;16(11):e1008674 [PMID: 33137149]
  11. Cell Host Microbe. 2018 Jan 10;23(1):134-143.e6 [PMID: 29290574]
  12. Nat Commun. 2021 Jan 8;12(1):189 [PMID: 33420033]
  13. Cell Rep. 2022 Nov 22;41(8):111688 [PMID: 36417874]
  14. FEBS Lett. 2003 Sep 25;552(2-3):110-4 [PMID: 14527670]
  15. Curr Opin Microbiol. 2019 Dec;52:70-76 [PMID: 31229882]
  16. Infect Immun. 2014 Jan;82(1):460-8 [PMID: 24218483]
  17. Cell Rep. 2020 Jun 9;31(10):107746 [PMID: 32521271]
  18. Trends Parasitol. 2021 Nov;37(11):976-987 [PMID: 34389215]
  19. J Immunol. 2007 Sep 15;179(6):3988-94 [PMID: 17785837]
  20. Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6748-53 [PMID: 19346483]
  21. J Exp Med. 2022 Jan 3;219(1): [PMID: 34910085]
  22. Nature. 2006 Mar 9;440(7081):237-41 [PMID: 16407889]
  23. Am J Trop Med Hyg. 1979 May;28(3):467-71 [PMID: 222157]
  24. Immunity. 2012 Dec 14;37(6):1009-23 [PMID: 23219391]
  25. Eur J Immunol. 2012 Sep;42(9):2395-408 [PMID: 22684987]
  26. Sci Immunol. 2018 Aug 24;3(26): [PMID: 30143555]
  27. Nat Commun. 2020 May 5;11(1):2212 [PMID: 32371889]
  28. EMBO Rep. 2022 Oct 6;23(10):e54277 [PMID: 35899491]
  29. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10125-30 [PMID: 18626016]
  30. J Parasitol Res. 2012;2012:930257 [PMID: 22523644]
  31. Nucleic Acids Res. 2014 Apr;42(6):3894-907 [PMID: 24413561]
  32. J Exp Med. 2023 Oct 2;220(10): [PMID: 37642996]
  33. Infect Immun. 2004 Apr;72(4):1920-8 [PMID: 15039311]
  34. Nat Commun. 2014;5:3209 [PMID: 24492532]
  35. Br J Dermatol. 2024 Feb 16;190(3):305-315 [PMID: 37889986]
  36. PLoS Negl Trop Dis. 2014 Sep 25;8(9):e3202 [PMID: 25255446]
  37. PLoS Negl Trop Dis. 2012;6(10):e1858 [PMID: 23094119]
  38. Elife. 2021 Jan 07;10: [PMID: 33410748]
  39. PLoS Pathog. 2019 Jun 24;15(6):e1007887 [PMID: 31233552]
  40. Eur J Immunol. 2015 Oct;45(10):2927-36 [PMID: 26173909]
  41. Mol Microbiol. 2024 Mar;121(3):453-469 [PMID: 37612878]
  42. PLoS Pathog. 2022 Jan 18;18(1):e1010247 [PMID: 35041723]
  43. Cell. 2023 May 25;186(11):2288-2312 [PMID: 37236155]
  44. Nature. 2016 Jul 06;535(7610):153-8 [PMID: 27383986]
  45. J Exp Med. 2023 Jan 2;220(1): [PMID: 36315050]
  46. mBio. 2014 Feb 18;5(1): [PMID: 24549849]
  47. Immunol Rev. 2020 Sep;297(1):53-66 [PMID: 32564424]
  48. Mol Cell. 2022 Jul 7;82(13):2385-2400.e9 [PMID: 35594856]
  49. Nature. 2004 Jul 8;430(6996):213-8 [PMID: 15190255]
  50. J Exp Med. 2016 Sep 19;213(10):2113-28 [PMID: 27573815]
  51. Exp Parasitol. 2001 Oct;99(2):97-103 [PMID: 11748963]
  52. Science. 2008 Aug 15;321(5891):970-4 [PMID: 18703742]
  53. Antimicrob Agents Chemother. 2008 Oct;52(10):3642-7 [PMID: 18694950]
  54. Nat Rev Microbiol. 2009 Feb;7(2):99-109 [PMID: 19148178]
  55. Eur J Immunol. 2016 Apr;46(4):897-911 [PMID: 26689285]
  56. Immunol Rev. 2023 Mar;314(1):229-249 [PMID: 36656082]
  57. PLoS Pathog. 2015 May 28;11(5):e1004929 [PMID: 26020515]
  58. Cell Rep. 2017 Dec 26;21(13):3846-3859 [PMID: 29281832]
  59. Nat Commun. 2023 Feb 24;14(1):1049 [PMID: 36828815]
  60. PLoS Pathog. 2013;9(6):e1003452 [PMID: 23818853]
  61. J Immunol. 2000 Sep 1;165(5):2628-36 [PMID: 10946291]
  62. Cell Res. 2015 Dec;25(12):1285-98 [PMID: 26611636]
  63. Trends Microbiol. 2003 May;11(5):210-4 [PMID: 12781523]
  64. Cell Host Microbe. 2010 Dec 16;8(6):471-83 [PMID: 21147462]
  65. Science. 2020 Dec 4;370(6521): [PMID: 33093214]
  66. Nature. 2015 Oct 29;526(7575):666-71 [PMID: 26375259]
  67. J Immunol. 2010 Oct 1;185(7):4319-27 [PMID: 20826753]
  68. J Immunol. 2004 Dec 1;173(11):6521-5 [PMID: 15557140]
  69. Sci Signal. 2023 Jan 24;16(769):eabm0517 [PMID: 36693132]
  70. Mol Cell. 2002 Aug;10(2):417-26 [PMID: 12191486]
  71. iScience. 2024 Apr 18;27(5):109773 [PMID: 38711445]
  72. Nature. 2015 Oct 29;526(7575):660-5 [PMID: 26375003]
  73. Cell Rep. 2019 Jan 8;26(2):429-437.e5 [PMID: 30625325]
  74. Am J Trop Med Hyg. 2007 Mar;76(3):566-72 [PMID: 17360885]
  75. Nature. 2016 Jul 7;535(7610):111-6 [PMID: 27281216]
  76. PLoS Pathog. 2022 Jul 18;18(7):e1010305 [PMID: 35849616]
  77. Front Immunol. 2017 Nov 16;8:1558 [PMID: 29250059]
  78. J Cell Sci. 2020 Jun 22;134(5): [PMID: 32501279]
  79. J Invest Dermatol. 2019 Jun;139(6):1318-1328 [PMID: 30594488]
  80. Lancet. 2018 Sep 15;392(10151):951-970 [PMID: 30126638]
  81. Nat Rev Immunol. 2016 Jul;16(7):407-20 [PMID: 27291964]
  82. J Exp Med. 2023 Oct 2;220(10): [PMID: 37642997]
  83. J Leukoc Biol. 2017 Nov;102(5):1187-1198 [PMID: 28798144]
  84. J Immunol. 2017 Sep 15;199(6):2055-2068 [PMID: 28784846]
  85. Nat Rev Immunol. 2009 May;9(5):364-75 [PMID: 19390567]
  86. PLoS Pathog. 2012;8(3):e1002638 [PMID: 22479187]
  87. Nat Med. 2013 Jul;19(7):909-15 [PMID: 23749230]
  88. J Innate Immun. 2018;10(5-6):432-441 [PMID: 29642066]
  89. Sci Immunol. 2018 Aug 24;3(26): [PMID: 30143554]

MeSH Term

Animals
Neutrophils
Phosphate-Binding Proteins
Mice
Leishmaniasis, Cutaneous
Pyroptosis
Intracellular Signaling Peptides and Proteins
Apoptosis Regulatory Proteins
Mice, Inbred C57BL
Mice, Knockout
Adaptor Proteins, Signal Transducing
Leishmania mexicana
Gasdermins

Chemicals

Phosphate-Binding Proteins
Gsdmd protein, mouse
Intracellular Signaling Peptides and Proteins
Apoptosis Regulatory Proteins
Adaptor Proteins, Signal Transducing
Gasdermins

Word Cloud

Created with Highcharts 10.0.0neutrophilspyroptosisneutrophilhostnicheGSDMDcriticalcontrolLeishmaniashowGasderminDpathologymiceregulationinfectionleishmaniasisIntracellularpathogensreplicatemyeloidcellsdevisedwaysinhibitcell'skillingmachineryPyroptosisonestrategiesusedreducepathogenreplicatingtherebyexpansionintracellularparasitescansurviveusesilententryfavoringsubsequentparasitedisseminationmexicanainducesNLRP1-caspase-1-dependent-mediatedprocessparasite-inducedabsenceobserveincreasednumberinfecteddermaltwodayspost-infectionUsingadoptivetransferneutropeniccontributesearlyrolepositiveinfluencediseaseoutcomedemonstratedfollowingneutrophil-specificdeletionThusstudyestablishesregulatorNLRP1-dependentactivationcontrolscutaneous

Similar Articles

Cited By