Alpha-synuclein-induced nigrostriatal degeneration and pramipexole treatment disrupt frontostriatal plasticity.

Sarah Chevalier, Mélina Decourt, Maureen Francheteau, François Nicol, Anaïs Balbous, Pierre-Olivier Fernagut, Marianne Benoit-Marand
Author Information
  1. Sarah Chevalier: Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France.
  2. Mélina Decourt: Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France.
  3. Maureen Francheteau: Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France.
  4. François Nicol: Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France.
  5. Anaïs Balbous: Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France.
  6. Pierre-Olivier Fernagut: Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France. ORCID
  7. Marianne Benoit-Marand: Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France. marianne.benoit.marand@univ-poitiers.fr. ORCID

Abstract

Parkinson's disease is characterized by the degeneration of substantia nigra pars compacta (SNc) dopaminergic neurons, leading to motor and cognitive symptoms. Numerous cellular and molecular adaptations following neurodegeneration or dopamine replacement therapy (DRT) have been described in motor networks but little is known regarding associative basal ganglia loops. This study investigated the contributions of nigrostriatal degeneration and pramipexole (PPX) on neuronal activity in the orbitofrontal cortex (OFC), frontostriatal plasticity, and markers of synaptic plasticity. Bilateral nigrostriatal degeneration was induced by viral-mediated expression of human mutated alpha-synuclein in the SNc. Juxtacellular recordings were performed in anesthetized rats to evaluate neuronal activity in the OFC. Recordings in the dorsomedial striatum (DMS) were performed, and spike probability in response to OFC stimulation was measured before and after high-frequency stimulation (HFS). Post-mortem analysis included stereological assessment of nigral neurodegeneration, BDNF and TrkB protein levels. Nigrostriatal neurodegeneration led to altered firing patterns of OFC neurons that were restored by PPX. HFS of the OFC led to an increased spike probability in the DMS, while dopaminergic loss had the opposite effect. PPX led to a decreased spike probability following HFS in control rats and failed to counteract the effect of dopaminergic neurodegeneration. These alterations were associated with decreased levels of BDNF and TrkB in the DMS. This study demonstrates that nigral dopaminergic loss and PPX both contribute to alter frontostriatal transmission, precluding adequate information processing in associative basal ganglia loops as a gateway for the development of non-motor symptoms or non-motor side effects of DRT.

References

  1. Neurobiol Dis. 2022 Jun 1;167:105674 [PMID: 35245676]
  2. Trends Cogn Sci. 2019 Mar;23(3):213-234 [PMID: 30711326]
  3. Lancet Neurol. 2009 Dec;8(12):1140-9 [PMID: 19909912]
  4. Behav Brain Res. 2022 Aug 26;432:113968 [PMID: 35738338]
  5. J Neurophysiol. 2016 Aug 1;116(2):306-21 [PMID: 27098024]
  6. J Comp Neurol. 2011 Dec 15;519(18):3766-801 [PMID: 21800317]
  7. Brain Res Bull. 2009 Feb 16;78(2-3):60-8 [PMID: 18805468]
  8. Neuropharmacology. 2018 Jul 15;137:1-12 [PMID: 29689260]
  9. Arch Neurol. 2000 Apr;57(4):470-5 [PMID: 10768619]
  10. Mov Disord. 2009 Aug 15;24(11):1641-9 [PMID: 19514014]
  11. Brain Cogn. 2004 Jun;55(1):11-29 [PMID: 15134840]
  12. J Neurosci. 2001 May 15;21(10):3628-38 [PMID: 11331392]
  13. Cereb Cortex. 2011 Jun;21(6):1362-78 [PMID: 21045003]
  14. Neurobiol Dis. 2021 Jan;147:105159 [PMID: 33152506]
  15. PLoS One. 2015 Mar 04;10(3):e0117698 [PMID: 25739024]
  16. Acta Neuropathol Commun. 2015 Jul 25;3:46 [PMID: 26205255]
  17. Nat Rev Drug Discov. 2011 Mar;10(3):209-19 [PMID: 21358740]
  18. J Neurosci. 2006 Apr 5;26(14):3875-84 [PMID: 16597742]
  19. Annu Rev Neurosci. 2011;34:441-66 [PMID: 21469956]
  20. Lancet Neurol. 2010 Dec;9(12):1200-1213 [PMID: 20880750]
  21. J Neural Transm (Vienna). 2019 Apr;126(4):411-422 [PMID: 30937538]
  22. Eur J Neurosci. 2024 Apr;59(7):1460-1479 [PMID: 38155094]
  23. Behav Brain Res. 2016 Jan 1;296:129-133 [PMID: 26341317]
  24. Int J Neuropsychopharmacol. 2013 Jun;16(5):1165-7 [PMID: 23110855]
  25. J Neurosci. 2004 Sep 22;24(38):8214-22 [PMID: 15385604]
  26. eNeuro. 2021 Oct 18;8(5): [PMID: 34556558]
  27. Philos Trans R Soc Lond B Biol Sci. 2015 Jul 5;370(1672): [PMID: 26009763]
  28. Biomedicines. 2022 Feb 24;10(3): [PMID: 35327343]
  29. J Comp Neurol. 2023 Feb;531(2):217-237 [PMID: 36226328]
  30. Curr Opin Neurobiol. 2023 Dec;83:102798 [PMID: 37866012]
  31. Exp Neurol. 2020 Aug;330:113357 [PMID: 32437708]
  32. Brain. 2001 Dec;124(Pt 12):2503-12 [PMID: 11701603]
  33. Mov Disord. 2016 Jun;31(6):802-13 [PMID: 27193205]
  34. J Neurosci. 2017 Feb 8;37(6):1493-1504 [PMID: 28069917]
  35. Mol Psychiatry. 2022 Jan;27(1):445-465 [PMID: 33875802]
  36. Exp Neurol. 2015 Nov;273:243-52 [PMID: 26363495]
  37. Neuropharmacology. 2016 Oct;109:69-77 [PMID: 27216859]
  38. Trends Neurosci. 1998 Oct;21(10):433-7 [PMID: 9786341]
  39. Curr Res Neurobiol. 2022 Dec 16;4:100065 [PMID: 36632447]
  40. Brain. 2023 Sep 1;146(9):3587-3597 [PMID: 37183455]
  41. Neurosci Lett. 1999 Jul 23;270(1):45-8 [PMID: 10454142]
  42. NPJ Parkinsons Dis. 2023 Mar 1;9(1):31 [PMID: 36859454]
  43. Front Neurosci. 2021 Apr 27;15:645849 [PMID: 33986639]
  44. PLoS One. 2013 Dec 31;8(12):e83608 [PMID: 24391793]
  45. Lancet Neurol. 2017 Mar;16(3):238-250 [PMID: 28229895]
  46. Prog Neurobiol. 2015 Sep;132:96-168 [PMID: 26209473]
  47. Eur J Neurosci. 2008 May;27(9):2313-21 [PMID: 18445222]
  48. J Neurosci. 2012 Apr 4;32(14):4959-71 [PMID: 22492051]

Grants

  1. #R20006GG/RAK20003GGA/Association France Parkinson (France Parkinson)
  2. #R20006GG/RAK20003GGA/Association France Parkinson (France Parkinson)
  3. #R20006GG/RAK20003GGA/Association France Parkinson (France Parkinson)
  4. #R20006GG/RAK20003GGA/Association France Parkinson (France Parkinson)
  5. #R20006GG/RAK20003GGA/Association France Parkinson (France Parkinson)

Word Cloud

Created with Highcharts 10.0.0OFCdegenerationdopaminergicneurodegenerationPPXnigrostriatalfrontostriatalplasticityDMSspikeprobabilityHFSledSNcneuronsmotorsymptomsfollowingDRTassociativebasalganglialoopsstudypramipexoleneuronalactivityperformedratsstimulationnigralBDNFTrkBlevelslosseffectdecreasednon-motorParkinson'sdiseasecharacterizedsubstantianigraparscompactaleadingcognitiveNumerouscellularmolecularadaptationsdopaminereplacementtherapydescribednetworkslittleknownregardinginvestigatedcontributionsorbitofrontalcortexmarkerssynapticBilateralinducedviral-mediatedexpressionhumanmutatedalpha-synucleinJuxtacellularrecordingsanesthetizedevaluateRecordingsdorsomedialstriatumresponsemeasuredhigh-frequencyPost-mortemanalysisincludedstereologicalassessmentproteinNigrostriatalalteredfiringpatternsrestoredincreasedoppositecontrolfailedcounteractalterationsassociateddemonstratescontributealtertransmissionprecludingadequateinformationprocessinggatewaydevelopmentsideeffectsAlpha-synuclein-inducedtreatmentdisrupt

Similar Articles

Cited By