Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks.

Yuxuan Si, Zihan Huang, Zhengqing Fang, Zhouhang Yuan, Zhengxing Huang, Yingming Li, Ying Wei, Fei Wu, Yu-Feng Yao
Author Information
  1. Yuxuan Si: Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China. ORCID
  2. Zihan Huang: College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China.
  3. Zhengqing Fang: Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China.
  4. Zhouhang Yuan: Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China.
  5. Zhengxing Huang: College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China.
  6. Yingming Li: College of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China.
  7. Ying Wei: College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China.
  8. Fei Wu: College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China.
  9. Yu-Feng Yao: Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China.

Abstract

Unraveling the intricate network of associations among microRNAs (miRNAs), genes, and diseases is pivotal for deciphering molecular mechanisms, refining disease diagnosis, and crafting targeted therapies. Computational strategies, leveraging link prediction within biological graphs, present a cost-efficient alternative to high-cost empirical assays. However, while plenty of methods excel at predicting specific associations, such as miRNA-disease associations (MDAs), miRNA-target interactions (MTIs), and disease-gene associations (DGAs), a holistic approach harnessing diverse data sources for multifaceted association prediction remains largely unexplored. The limited availability of high-quality data, as vitro experiments to comprehensively confirm associations are often expensive and time-consuming, results in a sparse and noisy heterogeneous graph, hindering an accurate prediction of these complex associations. To address this challenge, we propose a novel framework called Global-local aware Heterogeneous Graph Contrastive Learning (GlaHGCL). GlaHGCL combines global and local contrastive learning to improve node embeddings in the heterogeneous graph. In particular, global contrastive learning enhances the robustness of node embeddings against noise by aligning global representations of the original graph and its augmented counterpart. Local contrastive learning enforces representation consistency between functionally similar or connected nodes across diverse data sources, effectively leveraging data heterogeneity and mitigating the issue of data scarcity. The refined node representations are applied to downstream tasks, such as MDA, MTI, and DGA prediction. Experiments show GlaHGCL outperforming state-of-the-art methods, and case studies further demonstrate its ability to accurately uncover new associations among miRNAs, genes, and diseases. We have made the datasets and source code publicly available at https://github.com/Sue-syx/GlaHGCL.

Keywords

References

  1. Nature. 2007 Oct 11;449(7163):682-8 [PMID: 17898713]
  2. Cancer Res. 2005 Aug 15;65(16):7065-70 [PMID: 16103053]
  3. Cancers (Basel). 2019 Aug 21;11(9): [PMID: 31438587]
  4. Genomics Proteomics Bioinformatics. 2022 Jun;20(3):446-454 [PMID: 35643191]
  5. BMC Syst Biol. 2013 Oct 08;7:101 [PMID: 24103777]
  6. Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839 [PMID: 27924018]
  7. Cell. 2018 Mar 22;173(1):20-51 [PMID: 29570994]
  8. Nucleic Acids Res. 2022 Jan 7;50(D1):D222-D230 [PMID: 34850920]
  9. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33367541]
  10. Brief Bioinform. 2023 Jul 20;24(4): [PMID: 37287133]
  11. Nucleic Acids Res. 2019 Jan 8;47(D1):D1013-D1017 [PMID: 30364956]
  12. Methods. 2015 Mar;74:83-9 [PMID: 25484339]
  13. Brief Bioinform. 2021 Mar 22;22(2):2032-2042 [PMID: 32181478]
  14. Front Cell Dev Biol. 2021 Jun 10;9:603758 [PMID: 34178973]
  15. Bioinformatics. 2019 Nov 1;35(21):4364-4371 [PMID: 30977780]
  16. Stem Cell Res Ther. 2019 Jun 27;10(1):191 [PMID: 31248450]
  17. Nat Rev Genet. 2008 Nov;9(11):831-42 [PMID: 18852696]
  18. PLoS Comput Biol. 2021 Jun 3;17(6):e1009048 [PMID: 34081706]
  19. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 34293850]
  20. Nat Rev Genet. 2013 Aug;14(8):535-48 [PMID: 23817310]
  21. Brief Bioinform. 2023 Sep 22;24(6): [PMID: 37985451]
  22. Bioinformatics. 2020 Apr 15;36(8):2538-2546 [PMID: 31904845]
  23. Mol Ther. 2022 Apr 6;30(4):1775-1786 [PMID: 35121109]
  24. PLoS One. 2012;7(2):e31039 [PMID: 22312439]
  25. Database (Oxford). 2017 Jan 10;2017: [PMID: 28077569]
  26. Cell Biol Int. 2018 Nov;42(11):1564-1574 [PMID: 30136751]
  27. Nucleic Acids Res. 2018 Jan 4;46(D1):D168-D174 [PMID: 29077896]
  28. Reproduction. 2018 Nov;156(5):439-449 [PMID: 30328340]
  29. Nucleic Acids Res. 2014 Jan;42(Database issue):D1070-4 [PMID: 24194601]
  30. IEEE J Biomed Health Inform. 2019 Jul;23(4):1805-1815 [PMID: 31283472]
  31. Int J Biochem Cell Biol. 2013 Apr;45(4):858-65 [PMID: 23348614]
  32. IEEE/ACM Trans Comput Biol Bioinform. 2024 May-Jun;21(3):328-347 [PMID: 38194377]
  33. Biochim Biophys Acta. 2016 Nov;1860(11 Pt B):2735-9 [PMID: 26996392]
  34. Brief Bioinform. 2023 Sep 20;24(5): [PMID: 37529914]
  35. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 35524503]
  36. Bioinformatics. 2013 Mar 1;29(5):638-44 [PMID: 23325619]
  37. Cancer Res. 2023 Jan 4;83(1):59-73 [PMID: 36265133]
  38. Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655 [PMID: 29145629]
  39. Brief Bioinform. 2023 Sep 20;24(5): [PMID: 37482409]
  40. Oncotarget. 2015 Mar 30;6(9):7209-20 [PMID: 25797243]
  41. Brief Funct Genomics. 2021 Jul 17;20(4):273-287 [PMID: 33554238]
  42. Genome Biol. 2019 Jan 3;20(1):1 [PMID: 30606230]
  43. Bioinformatics. 2012 Sep 15;28(18):i509-i514 [PMID: 22962474]
  44. Nat Rev Cancer. 2004 Sep;4(9):665-76 [PMID: 15343273]
  45. Brief Bioinform. 2023 Mar 19;24(2): [PMID: 36907654]
  46. Genes (Basel). 2019 Oct 09;10(10): [PMID: 31601051]
  47. IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):676-687 [PMID: 33587705]
  48. Trends Neurosci. 2006 May;29(5):286-93 [PMID: 16616379]
  49. Brief Bioinform. 2023 Nov 22;25(1): [PMID: 38243694]

Grants

  1. 2023YFE0204200/National Key Research and Development Program of China
  2. U20A20387/National Natural Science Foundation of China

MeSH Term

MicroRNAs
Humans
Gene Regulatory Networks
Computational Biology
Machine Learning
Algorithms
Genetic Predisposition to Disease

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0associationsdatapredictionassociationgraphcontrastivelearningsourcesheterogeneousGlaHGCLglobalnodeamongmiRNAsgenesdiseasesleveragingmethodsdiversemultifacetedGlobal-localawareHeterogeneousGraphContrastiveLearningembeddingsrepresentationsUnravelingintricatenetworkmicroRNAspivotaldecipheringmolecularmechanismsrefiningdiseasediagnosiscraftingtargetedtherapiesComputationalstrategieslinkwithinbiologicalgraphspresentcost-efficientalternativehigh-costempiricalassaysHoweverplentyexcelpredictingspecificmiRNA-diseaseMDAsmiRNA-targetinteractionsMTIsdisease-geneDGAsholisticapproachharnessingremainslargelyunexploredlimitedavailabilityhigh-qualityvitroexperimentscomprehensivelyconfirmoftenexpensivetime-consumingresultssparsenoisyhinderingaccuratecomplexaddresschallengeproposenovelframeworkcalledcombineslocalimproveparticularenhancesrobustnessnoisealigningoriginalaugmentedcounterpartLocalenforcesrepresentationconsistencyfunctionallysimilarconnectednodesacrosseffectivelyheterogeneitymitigatingissuescarcityrefinedapplieddownstreamtasksMDAMTIDGAExperimentsshowoutperformingstate-of-the-artcasestudiesdemonstrateabilityaccuratelyuncovernewmadedatasetssourcecodepubliclyavailablehttps://githubcom/Sue-syx/GlaHGCLmiRNA-gene-diseasenetworksdisease���genemiRNA���diseasemiRNA���geneinteraction

Similar Articles

Cited By