Urine-derived stem cells serve as a robust platform for generating native or engineered extracellular vesicles.

Anders Toftegaard Boysen, Bradley Whitehead, Anne Louise S Revenfeld, Dhanu Gupta, Thor Petersen, Peter Nejsum
Author Information
  1. Anders Toftegaard Boysen: Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark. anderstb@clin.au.dk. ORCID
  2. Bradley Whitehead: Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
  3. Anne Louise S Revenfeld: Center for Gene and Cellular Therapy, Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark.
  4. Dhanu Gupta: Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
  5. Thor Petersen: Department of Regional Health Research, Southern Danish University, Sønderborg, Denmark.
  6. Peter Nejsum: Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark. pn@clin.au.dk.

Abstract

BACKGROUND: Mesenchymal stromal cell (MSC) therapy holds great potential yet efficacy and safety concerns with cell therapy persist. The beneficial effects of MSCs are often attributed to their secretome that includes extracellular vesicles (EVs). EVs carry biologically active molecules, protected by a lipid bilayer. However, several barriers hinder large-scale MSC EV production. A serum-free culturing approach is preferred for producing clinical-grade MSC-derived EVs but this can affect both yield and purity. Consequently, new strategies have been explored, including genetically engineering MSCs to alter EV compositions to enhance potency, increase circulation time or mediate targeting. However, efficient transfection of MSCs is challenging. Typical sources of MSC include adipose tissue and bone marrow, which both require invasive extraction procedures. Here, we investigate the use of urine-derived stem cells (USCs) as a non-invasive and inexhaustible source of MSCs for EV production.
METHODS: We isolated, expanded, and characterized urine-derived stem cells (USCs) harvested from eight healthy donors at three different time points during the day. We evaluated the number of clones per urination, proliferation capacity and conducted flow cytometry to establish expression of surface markers. EVs were produced in chemically defined media and characterized. PEI/DNA transfection was used to genetically engineer USCs using transposon technology.
RESULTS: There were no differences between time points for clone number, doubling time or viability. USCs showed immunophenotypic characteristics of MSCs, such as expression of CD73, CD90 and CD105, with no difference at the assessed time points, however, male donors had reduced CD73 + cells. Expanded USCs were incubated without growth factors or serum for 72 h without a loss in viability and EVs were isolated. USCs were transfected with high efficiency and after 10 days of selection, pure engineered cell cultures were established.
CONCLUSIONS: Isolation and expansion of MSCs from urine is non-invasive, robust, and without apparent sex-related differences. The sampling time point did not affect any measured markers or USC isolation potential. USCs offer an attractive production platform for EVs, both native and engineered.

Keywords

References

  1. Front Cell Dev Biol. 2021 May 12;9:637239 [PMID: 34055772]
  2. Mol Cytogenet. 2015 Dec 01;8:94 [PMID: 26628918]
  3. Int J Mol Sci. 2021 Nov 19;22(22): [PMID: 34830384]
  4. Nat Biotechnol. 2011 Apr;29(4):341-5 [PMID: 21423189]
  5. In Vitro Cell Dev Biol Anim. 2015 Apr;51(4):408-14 [PMID: 25515247]
  6. J Transl Med. 2007 Nov 15;5:57 [PMID: 18005405]
  7. JAMA. 2012 Dec 12;308(22):2369-79 [PMID: 23117550]
  8. Circ Res. 2011 May 27;108(11):1340-7 [PMID: 21493893]
  9. Stem Cells Int. 2019 May 2;2019:8717694 [PMID: 31249602]
  10. Stem Cells. 2013 Sep;31(9):1840-56 [PMID: 23666768]
  11. Biologicals. 2007 Jun;35(3):165-71 [PMID: 17084092]
  12. PLoS One. 2018 Feb 12;13(2):e0192445 [PMID: 29432491]
  13. Cytotherapy. 2023 Jul;25(7):704-711 [PMID: 37061899]
  14. Stem Cell Res Ther. 2021 Aug 3;12(1):433 [PMID: 34344458]
  15. Sultan Qaboos Univ Med J. 2018 Aug;18(3):e264-e277 [PMID: 30607265]
  16. J Control Release. 2021 Oct 10;338:472-485 [PMID: 34428481]
  17. MedComm (2020). 2023 Feb 07;4(1):e214 [PMID: 36776763]
  18. J Cell Mol Med. 2011 Apr;15(4):718-46 [PMID: 21129153]
  19. Cytotherapy. 2023 Sep;25(9):939-945 [PMID: 37191614]
  20. J Extracell Biol. 2022 Oct 25;1(10):e63 [PMID: 38939213]
  21. Cells. 2022 Dec 10;11(24): [PMID: 36552765]
  22. J Extracell Vesicles. 2024 Feb;13(2):e12404 [PMID: 38326288]
  23. Am J Sports Med. 2022 Mar;50(4):1088-1105 [PMID: 35179989]
  24. Pharmaceutics. 2021 Jun 07;13(6): [PMID: 34200425]
  25. J Transl Med. 2014 Jan 07;12:8 [PMID: 24397850]
  26. J Korean Med Sci. 2015 Dec;30(12):1764-76 [PMID: 26713051]
  27. J Extracell Vesicles. 2017 Jun 6;6(1):1324730 [PMID: 28717420]
  28. Cytotherapy. 2013 Jun;15(6):641-8 [PMID: 23570660]
  29. Cytotherapy. 2024 Feb;26(2):157-170 [PMID: 38069981]
  30. PeerJ. 2021 Apr 21;9:e11165 [PMID: 33976969]
  31. Nat Biotechnol. 2020 Jul;38(7):824-844 [PMID: 32572269]
  32. J Cancer Res Clin Oncol. 2021 Dec;147(12):3725-3734 [PMID: 34032893]
  33. Stem Cell Res Ther. 2024 Apr 22;15(1):112 [PMID: 38644508]
  34. Nat Commun. 2018 Jun 27;9(1):2498 [PMID: 29950674]
  35. Front Immunol. 2014 Oct 22;5:518 [PMID: 25374570]
  36. Osteoarthritis Cartilage. 2019 Jul;27(7):1094-1105 [PMID: 31002939]
  37. Nat Rev Drug Discov. 2021 Jan;20(1):6-7 [PMID: 33311580]
  38. Int J Mol Sci. 2021 May 11;22(10): [PMID: 34064900]
  39. J Inflamm (Lond). 2005 Jul 26;2:8 [PMID: 16045800]
  40. Stem Cell Res Ther. 2018 Jul 11;9(1):189 [PMID: 29996911]
  41. J Extracell Biol. 2022 Oct;1(10): [PMID: 36591537]
  42. Drug Deliv Transl Res. 2024 Jul 15;: [PMID: 39009932]
  43. Cell Immunol. 2010;264(2):171-9 [PMID: 20619400]
  44. Oxid Med Cell Longev. 2009 Apr-Jun;2(2):82-7 [PMID: 20357929]
  45. Sci Rep. 2020 Sep 15;10(1):15073 [PMID: 32934322]
  46. J Tissue Eng. 2021 Apr 20;12:20417314211008626 [PMID: 33959246]
  47. Cells. 2022 Jul 26;11(15): [PMID: 35892597]
  48. Regen Ther. 2023 Apr 20;23:67-75 [PMID: 37153832]
  49. Aesthet Surg J. 2020 Jun 15;40(7):784-799 [PMID: 31406975]
  50. Nat Biomed Eng. 2021 Sep;5(9):1084-1098 [PMID: 34616047]
  51. PLoS One. 2013;8(1):e53980 [PMID: 23349776]
  52. Gut. 2012 Mar;61(3):468-9 [PMID: 21617158]
  53. Pathol Res Pract. 2023 Jul;247:154541 [PMID: 37245265]
  54. J Extracell Vesicles. 2022 Jul;11(7):e12248 [PMID: 35879268]
  55. Cytotherapy. 2024 Sep;26(9):988-998 [PMID: 38819364]
  56. Front Pharmacol. 2020 Mar 03;11:158 [PMID: 32194404]
  57. Mol Neurobiol. 2022 Oct;59(10):6125-6140 [PMID: 35867205]
  58. Heliyon. 2024 Mar 10;10(6):e27306 [PMID: 38509987]
  59. Stem Cells Dev. 2021 Nov;30(22):1126-1138 [PMID: 34549601]
  60. Stem Cells. 2006 Feb;24(2):454-61 [PMID: 16099993]
  61. Stem Cell Res Ther. 2018 May 2;9(1):128 [PMID: 29720259]
  62. PLoS One. 2014 Jan 29;9(1):e87238 [PMID: 24489878]
  63. Cancer Lett. 2013 Apr 28;330(2):150-62 [PMID: 23266426]
  64. Mol Ther. 2021 May 5;29(5):1729-1743 [PMID: 33484965]
  65. Stem Cells Dev. 2011 Aug;20(8):1297-308 [PMID: 21303266]
  66. Blood. 2003 Nov 15;102(10):3521-9 [PMID: 12893748]
  67. Biomaterials. 2018 Jan;152:1-14 [PMID: 29078136]
  68. Biol Sex Differ. 2018 Oct 22;9(1):45 [PMID: 30343668]

Grants

  1. 2022-0357/Jascha Fonden
  2. 25/2 2022/Riisfort Fonden
  3. Funded PhD scholarship/Sundhedsvidenskabelige Fakultet, Aarhus Universitet
  4. CF21-0315/Carlsbergfondet
  5. DFF-1032-00242B/Danmarks Frie Forskningsfond

MeSH Term

Humans
Extracellular Vesicles
Mesenchymal Stem Cells
Urine
Male
Female
Cells, Cultured
Adult
Cell Proliferation
Middle Aged
Cell Differentiation

Word Cloud

Created with Highcharts 10.0.0USCsMSCsEVstimestemcellscellMSCvesiclesEVproductionpointswithoutengineeredtherapypotentialextracellularHoweveraffectgeneticallytransfectionurine-derivednon-invasiveisolatedcharacterizeddonorsnumberexpressionmarkersdifferencesviabilityrobustplatformnativeUrine-derivedBACKGROUND:Mesenchymalstromalholdsgreatyetefficacysafetyconcernspersistbeneficialeffectsoftenattributedsecretomeincludescarrybiologicallyactivemoleculesprotectedlipidbilayerseveralbarriershinderlarge-scaleserum-freeculturingapproachpreferredproducingclinical-gradeMSC-derivedcanyieldpurityConsequentlynewstrategiesexploredincludingengineeringaltercompositionsenhancepotencyincreasecirculationmediatetargetingefficientchallengingTypicalsourcesincludeadiposetissuebonemarrowrequireinvasiveextractionproceduresinvestigateuseinexhaustiblesourceMETHODS:expandedharvestedeighthealthythreedifferentdayevaluatedclonesperurinationproliferationcapacityconductedflowcytometryestablishsurfaceproducedchemicallydefinedmediaPEI/DNAusedengineerusingtransposontechnologyRESULTS:clonedoublingshowedimmunophenotypiccharacteristicsCD73CD90CD105differenceassessedhowevermalereducedCD73 + cellsExpandedincubatedgrowthfactorsserum72 hlosstransfectedhighefficiency10daysselectionpureculturesestablishedCONCLUSIONS:Isolationexpansionurineapparentsex-relatedsamplingpointmeasuredUSCisolationofferattractiveservegeneratingExtracellularMSC-engineeringNoninvasive

Similar Articles

Cited By