Automated design of multi-target ligands by generative deep learning.

Laura Isigkeit, Tim Hörmann, Espen Schallmayer, Katharina Scholz, Felix F Lillich, Johanna H M Ehrler, Benedikt Hufnagel, Jasmin Büchner, Julian A Marschner, Jörg Pabel, Ewgenij Proschak, Daniel Merk
Author Information
  1. Laura Isigkeit: Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany. ORCID
  2. Tim Hörmann: Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany. ORCID
  3. Espen Schallmayer: Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany.
  4. Katharina Scholz: Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany. ORCID
  5. Felix F Lillich: Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany. ORCID
  6. Johanna H M Ehrler: Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany. ORCID
  7. Benedikt Hufnagel: Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany.
  8. Jasmin Büchner: Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany.
  9. Julian A Marschner: Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany.
  10. Jörg Pabel: Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377, Munich, Germany. ORCID
  11. Ewgenij Proschak: Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany.
  12. Daniel Merk: Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438, Frankfurt, Germany. daniel.merk@cup.lmu.de. ORCID

Abstract

Generative deep learning models enable data-driven de novo design of molecules with tailored features. Chemical language models (CLM) trained on string representations of molecules such as SMILES have been successfully employed to design new chemical entities with experimentally confirmed activity on intended targets. Here, we probe the application of CLM to generate multi-target ligands for designed polypharmacology. We capitalize on the ability of CLM to learn from small fine-tuning sets of molecules and successfully bias the model towards designing drug-like molecules with similarity to known ligands of target pairs of interest. Designs obtained from CLM after pooled fine-tuning are predicted active on both proteins of interest and comprise pharmacophore elements of ligands for both targets in one molecule. Synthesis and testing of twelve computationally favored CLM designs for six target pairs reveals modulation of at least one intended protein by all selected designs with up to double-digit nanomolar potency and confirms seven compounds as designed dual ligands. These results corroborate CLM for multi-target de novo design as source of innovation in drug discovery.

References

  1. Bioorg Chem. 2018 Oct;80:655-667 [PMID: 30059891]
  2. Nat Rev Drug Discov. 2006 Apr;5(4):295-309 [PMID: 16582875]
  3. J Chem Inf Model. 2019 Apr 22;59(4):1347-1356 [PMID: 30908913]
  4. J Med Chem. 2019 Jan 24;62(2):420-444 [PMID: 30035545]
  5. J Med Chem. 2017 Sep 28;60(18):7703-7724 [PMID: 28845983]
  6. Mol Inform. 2018 Jan;37(1-2): [PMID: 29095571]
  7. Nat Rev Rheumatol. 2022 Jun;18(6):326-334 [PMID: 35314796]
  8. ACS Cent Sci. 2018 Jan 24;4(1):120-131 [PMID: 29392184]
  9. J Am Chem Soc. 2023 Jul 12;145(27):14802-14810 [PMID: 37385602]
  10. Front Med (Lausanne). 2020 Jul 09;7:331 [PMID: 32733906]
  11. ACS Med Chem Lett. 2021 Jul 06;12(8):1261-1266 [PMID: 34413955]
  12. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2563-E2570 [PMID: 28320959]
  13. Mol Inform. 2013 Feb;32(2):133-138 [PMID: 23956801]
  14. Sci Rep. 2015 Oct 01;5:14782 [PMID: 26424593]
  15. J Med Chem. 2023 Jun 22;66(12):8170-8177 [PMID: 37256819]
  16. J Med Chem. 2014 Nov 26;57(22):9220-31 [PMID: 25295852]
  17. Methods Mol Biol. 2022;2390:207-232 [PMID: 34731471]
  18. Nat Biotechnol. 2007 Feb;25(2):197-206 [PMID: 17287757]
  19. Nat Rev Gastroenterol Hepatol. 2021 Jan;18(1):24-39 [PMID: 33093663]
  20. Bioorg Med Chem Lett. 2008 Aug 1;18(15):4339-43 [PMID: 18621523]
  21. Nat Rev Immunol. 2017 Apr;17(4):219-232 [PMID: 28260787]
  22. Biochem Pharmacol. 2022 Oct;204:115191 [PMID: 35907497]
  23. Nat Rev Drug Discov. 2019 Jun;18(6):463-477 [PMID: 30976107]
  24. Planta Med. 2006 Aug;72(10):881-7 [PMID: 16858665]
  25. Anal Biochem. 2006 Aug 1;355(1):71-80 [PMID: 16729954]
  26. Eur Heart J. 2020 Jan 7;41(2):255-323 [PMID: 31497854]
  27. Nat Commun. 2024 Sep 11;15(1):7946 [PMID: 39261471]
  28. J Biol Chem. 2018 Nov 23;293(47):18180-18191 [PMID: 30275017]
  29. Pharmacol Ther. 2017 Dec;180:62-76 [PMID: 28642117]
  30. Pharmacol Res. 2017 Nov;125(Pt A):4-13 [PMID: 28527699]
  31. J Chem Inf Model. 2020 Dec 28;60(12):5918-5922 [PMID: 33118816]
  32. J Biol Chem. 2015 Dec 4;290(49):29127-39 [PMID: 26420482]
  33. Nat Commun. 2024 Apr 22;15(1):3408 [PMID: 38649351]
  34. Physiol Rev. 2020 Jan 1;100(1):171-210 [PMID: 31487233]
  35. Biochem Pharmacol. 2022 Jan;195:114866 [PMID: 34863976]
  36. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  37. iScience. 2019 Oct 25;20:489-496 [PMID: 31655060]
  38. Bioorg Med Chem. 2014 Apr 15;22(8):2427-34 [PMID: 24656800]
  39. Nature. 2014 Sep 4;513(7516):124-7 [PMID: 25043059]
  40. J Med Chem. 2003 Apr 24;46(9):1580-8 [PMID: 12699376]
  41. Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940 [PMID: 30398643]
  42. J Med Chem. 2013 Nov 27;56(22):8955-71 [PMID: 23919353]
  43. Nucleic Acids Res. 2016 Jan 4;44(D1):D1045-53 [PMID: 26481362]
  44. J Med Chem. 2022 Jul 14;65(13):9478-9492 [PMID: 35713420]
  45. Nat Rev Gastroenterol Hepatol. 2021 May;18(5):335-347 [PMID: 33568795]
  46. Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19477-19482 [PMID: 34165856]
  47. J Med Chem. 2009 Feb 26;52(4):904-7 [PMID: 19159286]
  48. J Chem Inf Model. 2019 Mar 25;59(3):1205-1214 [PMID: 30762364]
  49. Drug Discov Today. 2015 Sep;20(9):1104-11 [PMID: 25931264]
  50. Nature. 2017 Feb 8;542(7640):177-185 [PMID: 28179656]
  51. Nat Rev Cardiol. 2021 Dec;18(12):809-823 [PMID: 34127848]
  52. Bioorg Med Chem Lett. 2004 Jul 5;14(13):3549-53 [PMID: 15177471]
  53. J Med Chem. 2020 Jul 9;63(13):6727-6740 [PMID: 32356658]
  54. Nat Commun. 2023 Jan 7;14(1):114 [PMID: 36611029]
  55. J Chem Inf Model. 2015 Feb 23;55(2):460-73 [PMID: 25558886]
  56. Curr Opin Struct Biol. 2023 Apr;79:102527 [PMID: 36738564]
  57. J Med Chem. 2020 Aug 13;63(15):8369-8379 [PMID: 32687365]
  58. J Med Chem. 2016 Jan 14;59(1):61-81 [PMID: 26595749]
  59. Nat Chem. 2012 Jan 24;4(2):90-8 [PMID: 22270643]
  60. Lancet. 2005 Apr 16-22;365(9468):1415-28 [PMID: 15836891]
  61. J Med Chem. 2011 Feb 10;54(3):851-7 [PMID: 21192659]
  62. PLoS One. 2012;7(5):e33643 [PMID: 22606221]
  63. Drug Discov Today. 2018 Jun;23(6):1241-1250 [PMID: 29366762]
  64. ACS Cent Sci. 2018 Feb 28;4(2):268-276 [PMID: 29532027]
  65. ChemMedChem. 2011 Dec 9;6(12):2146-9 [PMID: 22021219]
  66. Nat Med. 2023 Jul;29(7):1649-1657 [PMID: 37464031]
  67. Mol Inform. 2018 Jan;37(1-2): [PMID: 29319225]

Grants

  1. 101040355/EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  2. 875510/Innovative Medicines Initiative (IMI)

MeSH Term

Deep Learning
Ligands
Drug Design
Drug Discovery
Humans
Models, Chemical
Polypharmacology
Proteins

Chemicals

Ligands
Proteins

Word Cloud

Created with Highcharts 10.0.0CLMligandsdesignmoleculesmulti-targetdeeplearningmodelsdenovosuccessfullyintendedtargetsdesignedfine-tuningtargetpairsinterestonedesignsGenerativeenabledata-driventailoredfeaturesChemicallanguagetrainedstringrepresentationsSMILESemployednewchemicalentitiesexperimentallyconfirmedactivityprobeapplicationgeneratepolypharmacologycapitalizeabilitylearnsmallsetsbiasmodeltowardsdesigningdrug-likesimilarityknownDesignsobtainedpooledpredictedactiveproteinscomprisepharmacophoreelementsmoleculeSynthesistestingtwelvecomputationallyfavoredsixrevealsmodulationleastproteinselecteddouble-digitnanomolarpotencyconfirmssevencompoundsdualresultscorroboratesourceinnovationdrugdiscoveryAutomatedgenerative

Similar Articles

Cited By