Dynamic changes in cellular atlases and communication patterns within yak ovaries across diverse reproductive states unveiled by single-cell analysis.

Jie Pei, Lin Xiong, Xingdong Wang, Shaoke Guo, Mengli Cao, Ziqiang Ding, Yandong Kang, Min Chu, Xiaoyun Wu, Pengjia Bao, Xian Guo
Author Information
  1. Jie Pei: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  2. Lin Xiong: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  3. Xingdong Wang: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  4. Shaoke Guo: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  5. Mengli Cao: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  6. Ziqiang Ding: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  7. Yandong Kang: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  8. Min Chu: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  9. Xiaoyun Wu: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  10. Pengjia Bao: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
  11. Xian Guo: Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.

Abstract

Yaks () exhibit exceptional adaptation to the challenging high-altitude environment of the Qinghai-Tibetan plateau, making them the sole bovine species capable of thriving in such exreme conditions. Investigating the cellular and molecular characteristics of yak ovaries across different reproductive states is crucial for gaining insight into their ovarian functions. Herein, the cellular atlases of yak ovaries in different reproductive states were depicted by single-cell RNA-sequencing (scRNA-seq). The cellular atlases of the ovaries were established by identifying specific gene expression patterns of various cell types, including granulosa cells, theca cells, stromal cells, smooth muscle cells, endothelial cells, glial cell, macrophages, natural killer cells, and proliferating cells. The cellular compositions of the ovaries vary among different reproductive states. Furthermore, the granulosa cells comprise six cell subtypes, while theca cells consist of eight cell subtypes. The granulosa cells and theca cells exhibit distinct biological functions throughout different reproductive states. The two cell types were aligned along their respective pseudotime trajectories. Moreover, a cell-to-cell communication network was constructed among distinct cell types within the ovary, spanning the three reproductive states. Notably, during the estrus period, the granulosa cells demonstrated more prominent interactions with other cell types compared to the remaining reproductive states.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2021 May 18;118(20): [PMID: 33980714]
  2. Mol Cell Proteomics. 2023 Nov;22(11):100642 [PMID: 37678639]
  3. Front Cell Dev Biol. 2021 Mar 29;9:647892 [PMID: 33855024]
  4. Lancet. 2010 Sep 11;376(9744):911-21 [PMID: 20708256]
  5. Am J Cancer Res. 2022 Aug 15;12(8):3495-3511 [PMID: 36119817]
  6. Elife. 2022 May 19;11: [PMID: 35588359]
  7. J Ovarian Res. 2009 Nov 16;2(1):17 [PMID: 19917087]
  8. J Pregnancy. 2015;2015:715735 [PMID: 26697222]
  9. Elife. 2022 Oct 07;11: [PMID: 36205477]
  10. Cell Discov. 2020 Dec 29;6(1):97 [PMID: 33372178]
  11. J Pathol. 2021 Nov;255(3):225-231 [PMID: 34338304]
  12. Cell Prolif. 2023 Dec;56(12):e13516 [PMID: 37309718]
  13. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  14. Nature. 2007 Sep 27;449(7161):398-402 [PMID: 17898743]
  15. Genes Dev. 2021 May 1;35(9-10):619-634 [PMID: 33888561]
  16. Br Vet J. 1993 Nov-Dec;149(6):579-83 [PMID: 8111618]
  17. Sci Rep. 2020 Nov 24;10(1):20446 [PMID: 33235250]
  18. Anim Reprod Sci. 2011 Apr;124(3-4):229-36 [PMID: 20869180]
  19. J Genet Genomics. 2020 Apr 20;47(4):175-186 [PMID: 32487456]
  20. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  21. Nat Commun. 2020 Mar 2;11(1):1147 [PMID: 32123174]
  22. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  23. Cancer Res. 2020 Sep 1;80(17):3466-3479 [PMID: 32641411]
  24. Annu Rev Cell Dev Biol. 2009;25:457-82 [PMID: 19807280]
  25. Front Endocrinol (Lausanne). 2022 Apr 28;13:894437 [PMID: 35573990]
  26. Best Pract Res Clin Endocrinol Metab. 2011 Dec;25(6):985-92 [PMID: 22115171]
  27. Sci Rep. 2016 Nov 23;6:37677 [PMID: 27876896]
  28. Cell Rep. 2020 Aug 11;32(6):108027 [PMID: 32783948]
  29. J Transl Med. 2023 Aug 30;21(1):581 [PMID: 37649075]
  30. Animals (Basel). 2019 May 29;9(6): [PMID: 31146394]
  31. PLoS Biol. 2020 Apr 27;18(4):e3000538 [PMID: 32339165]
  32. PLoS Biol. 2020 Dec 22;18(12):e3001025 [PMID: 33351795]
  33. Cell. 2020 Feb 6;180(3):585-600.e19 [PMID: 32004457]
  34. Nat Commun. 2019 Jul 18;10(1):3164 [PMID: 31320652]
  35. Crit Rev Food Sci Nutr. 2014;54(3):292-302 [PMID: 24188303]
  36. J Adolesc Young Adult Oncol. 2018 Feb;7(1):46-53 [PMID: 28846463]
  37. Hum Reprod. 2009 May;24(5):1142-51 [PMID: 19189992]
  38. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20015-20026 [PMID: 32759216]
  39. Dtsch Tierarztl Wochenschr. 1996 Aug-Sep;103(8-9):348-53 [PMID: 9011505]
  40. Biol Reprod. 2003 Oct;69(4):1265-72 [PMID: 12801979]
  41. Am J Primatol. 2022 Jun;84(6):e23303 [PMID: 34255870]
  42. Nature. 2023 Mar 20;: [PMID: 36944772]
  43. Commun Biol. 2018 Mar 22;1:18 [PMID: 30271905]
  44. Theriogenology. 2022 Mar 1;180:113-120 [PMID: 34971972]
  45. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  46. PLoS Biol. 2022 May 6;20(5):e3001629 [PMID: 35522652]
  47. Endocr Rev. 2009 Aug;30(5):438-64 [PMID: 19589950]
  48. J Adv Res. 2023 Feb;44:149-160 [PMID: 36725186]
  49. Anim Sci J. 2016 Jul;87(7):947-58 [PMID: 26470629]
  50. Cell Death Dis. 2021 Apr 12;12(4):388 [PMID: 33846307]
  51. FASEB J. 2020 Sep;34(9):12634-12645 [PMID: 32716582]
  52. Cell Biosci. 2017 Jul 25;7:36 [PMID: 28770041]
  53. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  54. iScience. 2022 Aug 04;25(8):104819 [PMID: 35996587]
  55. Sex Dev. 2023;17(2-3):145-155 [PMID: 36122567]
  56. Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2317418121 [PMID: 38252830]
  57. Biology (Basel). 2021 Nov 25;10(12): [PMID: 34943144]
  58. Endocr Rev. 2009 Oct;30(6):624-712 [PMID: 19776209]
  59. Theriogenology. 2006 Mar 1;65(4):721-30 [PMID: 16084578]
  60. Theriogenology. 2003 Mar;59(5-6):1303-12 [PMID: 12527077]
  61. Nat Commun. 2020 Nov 6;11(1):5628 [PMID: 33159074]
  62. Int J Biol Sci. 2019 Jan 1;15(2):404-415 [PMID: 30745830]
  63. Reprod Domest Anim. 2008 Jul;43 Suppl 2:217-23 [PMID: 18638127]
  64. Cell Death Dis. 2017 Oct 26;8(10):e3145 [PMID: 29072679]
  65. Nat Protoc. 2020 Apr;15(4):1484-1506 [PMID: 32103204]
  66. Biomed Res Int. 2015;2015:196904 [PMID: 26380264]
  67. PLoS One. 2014 Oct 16;9(10):e110683 [PMID: 25330369]
  68. J Ovarian Res. 2014 Jul 04;7:71 [PMID: 25018783]
  69. Dev Biol. 2014 Oct 15;394(2):242-52 [PMID: 25158167]

Word Cloud

Created with Highcharts 10.0.0cellsreproductivecellstatescellularovariesyakdifferenttypesgranulosaatlasessingle-cellthecacommunicationexhibitacrossfunctionspatternsamongsubtypesdistinctwithinovaryYaksexceptionaladaptationchallenginghigh-altitudeenvironmentQinghai-TibetanplateaumakingsolebovinespeciescapablethrivingexremeconditionsInvestigatingmolecularcharacteristicscrucialgaininginsightovarianHereindepictedRNA-sequencingscRNA-seqestablishedidentifyingspecificgeneexpressionvariousincludingstromalsmoothmuscleendothelialglialmacrophagesnaturalkillerproliferatingcompositionsvaryFurthermorecomprisesixconsisteightbiologicalthroughouttwoalignedalongrespectivepseudotimetrajectoriesMoreovercell-to-cellnetworkconstructedspanningthreeNotablyestrusperioddemonstratedprominentinteractionscomparedremainingDynamicchangesdiverseunveiledanalysisatlasstate

Similar Articles

Cited By