PhoP/PhoQ Two-Component System Contributes to Intestinal Inflammation Induced by in Neonatal Mice.

Yan Ma, Yingying Zhang, Yuting Wang, Zhu Qiao, Yingying Liu, Xiaodong Xia
Author Information
  1. Yan Ma: School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China.
  2. Yingying Zhang: The College of Life Sciences, Northwest University, Xi'an 710068, China.
  3. Yuting Wang: School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China.
  4. Zhu Qiao: School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China. ORCID
  5. Yingying Liu: School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China.
  6. Xiaodong Xia: State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. ORCID

Abstract

() is a foodborne pathogen capable of causing severe infections in newborns. The PhoP/PhoQ two-component system exerts a significant influence on bacterial virulence. This study aimed to investigate the impact of the PhoP/PhoQ system on intestinal inflammation in neonatal mice induced by . Neonatal mice were infected orally by BAA-894 (WT), a -gene-deletion strain (��), and a complementation strain (��), and the intestinal inflammation in the mice was monitored. Deletion of the gene reduced the viable count of in the ileum and alleviated intestinal tissue damage. Moreover, caspase-3 activity in the ileum of the WT- and ��-infected mice was significantly elevated compared to that of the �� and control groups. ELISA results showed elevated levels of TNF-�� and IL-6 in the ileum of the mice infected with WT and ��. In addition, deletion of the gene in resulted in a down-regulation of inflammatory genes (IL-1��, TNF-��, IL-6, NF-��B p65, TLR4) within the ileum and decreased inflammation by modulating the TLR4/NF-��B pathway. It is suggested that targeting the PhoP/PhoQ two-component system could be a potential strategy for mitigating -induced neonatal infections.

Keywords

References

  1. PLoS Genet. 2023 Dec 15;19(12):e1011070 [PMID: 38100394]
  2. mBio. 2024 Jun 12;15(6):e0061624 [PMID: 38771052]
  3. Food Microbiol. 2023 Jun;112:104244 [PMID: 36906298]
  4. Nat Commun. 2020 Aug 27;11(1):4311 [PMID: 32855420]
  5. J Transl Med. 2023 Jan 10;21(1):14 [PMID: 36627673]
  6. Nat Rev Immunol. 2023 Oct;23(10):666-681 [PMID: 37069261]
  7. PLoS One. 2011;6(8):e23100 [PMID: 21853073]
  8. Food Funct. 2022 Oct 17;13(20):10574-10586 [PMID: 36155608]
  9. mBio. 2023 Dec 19;14(6):e0150623 [PMID: 37847036]
  10. J Food Prot. 2009 Nov;72(11):2363-7 [PMID: 19903401]
  11. Antimicrob Agents Chemother. 2019 Dec 20;64(1): [PMID: 31611347]
  12. Nat Rev Gastroenterol Hepatol. 2022 Jul;19(7):468-479 [PMID: 35347256]
  13. J Ethnopharmacol. 2018 Oct 28;225:297-308 [PMID: 30005955]
  14. Trends Microbiol. 2023 Jul;31(7):749-762 [PMID: 36849330]
  15. FEMS Microbiol Rev. 2009 Mar;33(2):279-94 [PMID: 19243444]
  16. PLoS One. 2016 May 31;11(5):e0156289 [PMID: 27244258]
  17. Annu Rev Med. 2009;60:111-24 [PMID: 18817461]
  18. Nat Rev Gastroenterol Hepatol. 2016 Oct;13(10):590-600 [PMID: 27534694]
  19. Food Microbiol. 2021 Dec;100:103851 [PMID: 34416955]
  20. Int J Mol Sci. 2023 Jan 27;24(3): [PMID: 36768793]
  21. Gastroenterology. 2012 Sep;143(3):708-718.e5 [PMID: 22796522]
  22. Pediatr Res. 2015 Sep;78(3):232-8 [PMID: 25992911]
  23. Front Microbiol. 2017 Mar 02;8:316 [PMID: 28303125]
  24. J Agric Food Chem. 2020 Jul 1;68(26):7014-7023 [PMID: 32515192]
  25. PLoS Pathog. 2023 Dec 7;19(12):e1011345 [PMID: 38060591]
  26. Pediatr Res. 2007 Jun;61(6):716-21 [PMID: 17426653]
  27. Biomed Pharmacother. 2020 Nov;131:110660 [PMID: 32853910]
  28. Microbiol Spectr. 2016 Apr;4(2): [PMID: 27227295]
  29. Front Pharmacol. 2020 Sep 18;11:573475 [PMID: 33041816]
  30. Genes (Basel). 2022 Feb 18;13(2): [PMID: 35205417]
  31. Eur J Med Chem. 2022 May 5;235:114291 [PMID: 35307617]
  32. mSystems. 2019 Aug 6;4(4): [PMID: 31387931]
  33. J Immunol. 2011 Jun 15;186(12):7067-79 [PMID: 21551359]
  34. J Agric Food Chem. 2022 Jun 8;70(22):6755-6763 [PMID: 35607919]
  35. Food Funct. 2019 May 22;10(5):2986-2996 [PMID: 31074758]
  36. J Neuroinflammation. 2018 May 22;15(1):153 [PMID: 29788964]
  37. Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0017620 [PMID: 34191587]
  38. Am J Physiol Gastrointest Liver Physiol. 2014 May 1;306(9):G779-87 [PMID: 24627567]
  39. Am J Physiol Gastrointest Liver Physiol. 2012 Mar 15;302(6):G608-17 [PMID: 22207578]
  40. Food Microbiol. 2024 Feb;117:104393 [PMID: 37919015]
  41. Microbiol Spectr. 2024 Jan 11;12(1):e0396623 [PMID: 38099618]
  42. Acta Pharmacol Sin. 2010 Jan;31(1):35-42 [PMID: 20023693]
  43. J Antimicrob Chemother. 2024 Aug 1;79(8):1820-1830 [PMID: 38853496]
  44. Foodborne Pathog Dis. 2020 Apr;17(4):243-252 [PMID: 31702399]
  45. Microorganisms. 2021 Nov 11;9(11): [PMID: 34835462]
  46. Cell. 2021 Jan 7;184(1):149-168.e17 [PMID: 33278357]
  47. Front Nutr. 2021 Dec 14;8:798038 [PMID: 34970585]
  48. Cell. 2009 Sep 4;138(5):838-54 [PMID: 19737514]
  49. J Cell Mol Med. 2024 Jul;28(14):e18534 [PMID: 39031467]
  50. Mediators Inflamm. 2021 Oct 12;2021:6259381 [PMID: 34675753]
  51. J Cell Physiol. 2019 Aug;234(8):13431-13438 [PMID: 30618088]
  52. Int J Biol Sci. 2019 Aug 22;15(11):2308-2319 [PMID: 31595149]
  53. Antioxidants (Basel). 2021 Jun 23;10(7): [PMID: 34201645]
  54. Int J Mol Sci. 2024 Jun 18;25(12): [PMID: 38928389]

Grants

  1. 2022YFD2100104/the National Key Research and Development Program of China
  2. 242102110136/he Science and Technology Development Plan Project of Henan Province, China
  3. 242102110117/the Science and Technology Development Plan Project of Henan Province, China
  4. 24B550006/Key scientific research project of Henan Higher Education Institutions
  5. XKPY-2023001/National Scientific Research Project Cultivation Fund project of Huanghuai University

Word Cloud

Similar Articles

Cited By