Unraveling the Role of Bromodomain and Extra-Terminal Proteins in Human Uterine Leiomyosarcoma.

Qiwei Yang, Ali Falahati, Azad Khosh, Ricardo R Lastra, Thomas G Boyer, Ayman Al-Hendy
Author Information
  1. Qiwei Yang: Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA. ORCID
  2. Ali Falahati: Poundbury Cancer Institute for Personalised Medicine, Dorchester DT1 3BJ, UK.
  3. Azad Khosh: Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA. ORCID
  4. Ricardo R Lastra: Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
  5. Thomas G Boyer: Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
  6. Ayman Al-Hendy: Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA. ORCID

Abstract

Uterine leiomyosarcoma (uLMS) is the most common type of uterine sarcoma, associated with poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mechanism of the origin and development of uLMS is limited. Bromodomain and extra-terminal (BET) proteins are involved in both physiological and pathological events. However, the role of BET proteins in the pathogenesis of uLMS is unknown. Here, we show for the first time that BET protein family members, BRD2, BRD3, and BRD4, are aberrantly overexpressed in uLMS tissues compared to the myometrium, with a significant change by histochemical scoring assessment. Furthermore, inhibiting BET proteins with their small, potent inhibitors (JQ1 and I-BET 762) significantly inhibited the uLMS proliferation dose-dependently via cell cycle arrest. Notably, RNA-sequencing analysis revealed that the inhibition of BET proteins with JQ1 and I-BET 762 altered several critical pathways, including the hedgehog pathway, EMT, and transcription factor-driven pathways in uLMS. In addition, the targeted inhibition of BET proteins altered several other epigenetic regulators, including DNA methylases, histone modification, and mA regulators. The connections between BET proteins and crucial biological pathways provide a fundamental structure to better understand uterine diseases, particularly uLMS pathogenesis. Accordingly, targeting the vulnerable epigenome may provide an additional regulatory mechanism for uterine cancer treatment.

Keywords

References

  1. Cancer Discov. 2013 Mar;3(3):308-23 [PMID: 23430699]
  2. Cell Biol Int. 2022 Jun;46(6):907-921 [PMID: 35165984]
  3. Mol Cancer Ther. 2021 Jan;20(1):64-75 [PMID: 33087508]
  4. Int J Mol Sci. 2023 Apr 27;24(9): [PMID: 37175660]
  5. Med Res Rev. 2023 Nov;43(6):1878-1945 [PMID: 37147865]
  6. Mol Cancer Res. 2019 Aug;17(8):1721-1734 [PMID: 31043489]
  7. Epigenomes. 2019 Aug 06;3(3): [PMID: 34968226]
  8. Pharmaceutics. 2023 Mar 16;15(3): [PMID: 36986819]
  9. J Biol Chem. 2001 Aug 10;276(32):30423-8 [PMID: 11390382]
  10. Gynecol Oncol. 1996 Jul;62(1):25-32 [PMID: 8690287]
  11. Oncotarget. 2017 Mar 21;8(12):19478-19490 [PMID: 28061448]
  12. Front Mol Biosci. 2021 Sep 03;8:728777 [PMID: 34540900]
  13. Cancer Med. 2020 Nov;9(21):8144-8158 [PMID: 33034426]
  14. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  15. Nature. 2003 Feb 13;421(6924):686-8 [PMID: 12610592]
  16. Front Immunol. 2021 Feb 26;12:626255 [PMID: 33717143]
  17. Clin Cancer Res. 2004 Dec 15;10(24):8493-500 [PMID: 15623630]
  18. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  19. Oncol Lett. 2021 Jul;22(1):570 [PMID: 34113398]
  20. J Mol Biol. 2017 Jun 30;429(13):2003-2010 [PMID: 27890782]
  21. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Contemp Oncol (Pozn). 2021;25(1):1-6 [PMID: 33911974]
  24. Front Genet. 2020 Dec 02;11:582274 [PMID: 33343628]
  25. PLoS One. 2021 Sep 27;16(9):e0245638 [PMID: 34570796]
  26. Oncotarget. 2013 Nov;4(11):2080-95 [PMID: 24231268]
  27. Gynecol Oncol. 2008 Jun;109(3):329-34 [PMID: 18534250]
  28. J Cancer Sci Clin Ther. 2020;4(4):487-498 [PMID: 33179013]
  29. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  30. Oncol Rep. 2023 May;49(5): [PMID: 36929268]
  31. Cancer Cell. 2018 Mar 12;33(3):401-416.e8 [PMID: 29533782]
  32. Oncotarget. 2016 Jan 19;7(3):2545-54 [PMID: 26575423]
  33. Science. 2020 Apr 24;368(6489):387-394 [PMID: 32193360]
  34. Int J Mol Sci. 2024 Jan 11;25(2): [PMID: 38255982]
  35. Oncogenesis. 2020 Mar 10;9(3):33 [PMID: 32157097]
  36. Int J Mol Sci. 2016 Nov 07;17(11): [PMID: 27827996]
  37. Cell Prolif. 2013 Dec;46(6):654-64 [PMID: 24460719]
  38. Cell. 2017 Nov 2;171(4):950-965.e28 [PMID: 29100075]
  39. Front Bioeng Biotechnol. 2020 Mar 20;8:220 [PMID: 32266244]
  40. Acta Neuropathol Commun. 2021 Dec 18;9(1):195 [PMID: 34922631]
  41. Gene. 2018 May 15;654:95-102 [PMID: 29408621]
  42. J Cell Mol Med. 2019 Aug;23(8):5415-5431 [PMID: 31215771]
  43. Oncogene. 2017 Jun 15;36(24):3359-3374 [PMID: 28092669]
  44. Neoplasia. 2013 Feb;15(2):204-17 [PMID: 23441134]
  45. Cells. 2020 Dec 31;10(1): [PMID: 33396427]
  46. Science. 2023 Feb 17;379(6633):677-682 [PMID: 36705538]
  47. Cell Oncol (Dordr). 2013 Dec;36(6):493-503 [PMID: 24114327]
  48. Cancer Cell Int. 2022 Jun 13;22(1):212 [PMID: 35698138]
  49. Cells. 2022 Jul 10;11(14): [PMID: 35883603]
  50. Nature. 2010 Dec 23;468(7327):1067-73 [PMID: 20871596]
  51. Cancer Res. 2003 Oct 1;63(19):6299-310 [PMID: 14559817]
  52. Nat Rev Cancer. 2019 Nov;19(11):611-624 [PMID: 31511663]
  53. Nat Rev Mol Cell Biol. 2017 Apr;18(4):246-262 [PMID: 28053347]
  54. Oncotarget. 2015 Mar 20;6(8):5501-16 [PMID: 25849938]
  55. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  56. Exp Mol Pathol. 2018 Oct;105(2):216-222 [PMID: 30170017]
  57. Cell. 2012 Mar 30;149(1):22-35 [PMID: 22464321]
  58. Mol Cancer. 2021 Nov 10;20(1):145 [PMID: 34758842]
  59. Nature. 2010 Dec 23;468(7327):1119-23 [PMID: 21068722]
  60. Genome Res. 2012 Sep;22(9):1760-74 [PMID: 22955987]
  61. Mol Cancer Ther. 2016 Aug;15(8):1823-33 [PMID: 27256375]
  62. BMC Genomics. 2021 Aug 20;22(1):624 [PMID: 34416858]
  63. Cell. 2012 Aug 17;150(4):673-84 [PMID: 22901802]
  64. J Exp Clin Cancer Res. 2021 Sep 18;40(1):291 [PMID: 34537073]
  65. Cells. 2019 Nov 17;8(11): [PMID: 31744257]
  66. Stem Cell Reports. 2018 Mar 13;10(3):1102-1114 [PMID: 29456181]
  67. Curr Mol Med. 2009 Sep;9(7):873-86 [PMID: 19860666]
  68. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  69. Oncogene. 2017 Jan 5;36(1):122-132 [PMID: 27292261]
  70. Oncotarget. 2018 May 29;9(41):26491-26506 [PMID: 29899872]
  71. Sci Rep. 2021 Apr 23;11(1):8828 [PMID: 33893325]
  72. Nature. 2007 May 24;447(7143):433-40 [PMID: 17522677]
  73. Proc Natl Acad Sci U S A. 2021 Apr 13;118(15): [PMID: 33876771]
  74. Mol Cell. 2014 Jun 5;54(5):728-36 [PMID: 24905006]
  75. Cells. 2024 Jun 26;13(13): [PMID: 38994959]
  76. Gynecol Oncol. 2010 Jan;116(1):131-9 [PMID: 19853898]
  77. Biochem Biophys Res Commun. 2016 Sep 16;478(2):845-51 [PMID: 27507215]
  78. Cell. 2012 Mar 30;149(1):214-31 [PMID: 22464331]
  79. Epigenomes. 2020 Mar 14;4(1): [PMID: 34968239]
  80. Oncogene. 2021 May;40(19):3394-3407 [PMID: 33875786]
  81. Cells. 2022 Nov 27;11(23): [PMID: 36497061]
  82. Aging (Albany NY). 2021 Mar 3;13(6):8214-8227 [PMID: 33686960]
  83. Med Res Rev. 2021 Jan;41(1):223-245 [PMID: 32926459]
  84. Biochem Pharmacol. 2016 Apr 15;106:1-18 [PMID: 26707800]
  85. Pharmazie. 2018 Sep 1;73(9):491-493 [PMID: 30223929]
  86. Cell. 2013 Aug 1;154(3):569-82 [PMID: 23911322]
  87. PLoS One. 2018 Jul 23;13(7):e0200826 [PMID: 30036377]
  88. Mol Med Rep. 2023 May;27(5): [PMID: 36999588]
  89. Nat Rev Mol Cell Biol. 2023 Sep;24(9):668-687 [PMID: 36932157]
  90. Nat Rev Cancer. 2016 Jul;16(7):410 [PMID: 27256008]
  91. Cancer Lett. 2019 Feb 1;442:320-332 [PMID: 30391782]
  92. Gynecol Oncol. 2017 Apr;145(1):61-70 [PMID: 28317559]
  93. Theranostics. 2016 Jan 01;6(2):219-30 [PMID: 26877780]
  94. BMC Pulm Med. 2020 Oct 23;20(1):278 [PMID: 33097029]
  95. Anticancer Drugs. 2018 Nov;29(10):1011-1020 [PMID: 30096128]
  96. Signal Transduct Target Ther. 2021 Jan 19;6(1):23 [PMID: 33462181]
  97. Cell Death Dis. 2021 Sep 29;12(10):890 [PMID: 34588421]

Grants

  1. R01 HD106285/NICHD NIH HHS
  2. R01 HD106285/NIH HHS

MeSH Term

Humans
Female
Leiomyosarcoma
Uterine Neoplasms
Transcription Factors
Cell Proliferation
Azepines
Gene Expression Regulation, Neoplastic
Triazoles
Cell Cycle Proteins
Cell Line, Tumor
Epigenesis, Genetic
Cell Cycle Checkpoints
Middle Aged
Bromodomain Containing Proteins
Benzodiazepines
Proteins

Chemicals

Transcription Factors
Azepines
bromodomain and extra-terminal domain protein, human
Triazoles
(+)-JQ1 compound
molibresib
Cell Cycle Proteins
Bromodomain Containing Proteins
Benzodiazepines
Proteins

Word Cloud

Created with Highcharts 10.0.0uLMSBETproteinsuterineJQ1I-BET762pathwaysregulatorsUterineleiomyosarcomamechanismBromodomainextra-terminalpathogenesisproteinanalysisinhibitionalteredseveralincludinghedgehogpathwayEMTprovideepigenomecommontypesarcomaassociatedpoorprognosishighratesrecurrencemetastasisCurrentlymolecularorigindevelopmentlimitedinvolvedphysiologicalpathologicaleventsHoweverroleunknownshowfirsttimefamilymembersBRD2BRD3BRD4aberrantlyoverexpressedtissuescomparedmyometriumsignificantchangehistochemicalscoringassessmentFurthermoreinhibitingsmallpotentinhibitorssignificantlyinhibitedproliferationdose-dependentlyviacellcyclearrestNotablyRNA-sequencingrevealedcriticaltranscriptionfactor-drivenadditiontargetedepigeneticDNAmethylaseshistonemodificationmAconnectionscrucialbiologicalfundamentalstructurebetterunderstanddiseasesparticularlyAccordinglytargetingvulnerablemayadditionalregulatorycancertreatmentUnravelingRoleExtra-TerminalProteinsHumanLeiomyosarcomabromodomainm6Atranscriptionalfactorstranscriptome

Similar Articles

Cited By