Transcriptomic and Hormonal Changes in Wheat Roots Enhance Growth under Moderate Soil Drying.

Ying Li, Shuqiu Jiang, Yonghui Hong, Zixuan Yao, Yadi Chen, Min Zhu, Jinfeng Ding, Chunyan Li, Xinkai Zhu, Weifeng Xu, Wenshan Guo, Nanyan Zhu, Jianhua Zhang
Author Information
  1. Ying Li: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China. ORCID
  2. Shuqiu Jiang: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
  3. Yonghui Hong: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China. ORCID
  4. Zixuan Yao: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
  5. Yadi Chen: College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China. ORCID
  6. Min Zhu: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
  7. Jinfeng Ding: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China. ORCID
  8. Chunyan Li: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
  9. Xinkai Zhu: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
  10. Weifeng Xu: Joint International Research Laboratory of Water and Nutrient in Crop, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  11. Wenshan Guo: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China. ORCID
  12. Nanyan Zhu: Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China. ORCID
  13. Jianhua Zhang: Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China. ORCID

Abstract

Understanding the mechanisms that regulate plant root growth under soil drying is an important challenge in root biology. We observed that moderate soil drying promotes wheat root growth. To understand whether metabolic and hormonic changes are involved in this regulation, we performed transcriptome sequencing on wheat roots under well-watered and moderate soil drying conditions. The genes upregulated in wheat roots under soil drying were mainly involved in starch and sucrose metabolism and benzoxazinoid biosynthesis. Various plant hormone-related genes were differentially expressed during soil drying. Quantification of the plant hormones under these conditions showed that the concentrations of abscisic acid (ABA), cis-zeatin (CZ), and indole-3-acetic acid (IAA) significantly increased during soil drying, whereas the concentrations of salicylic (SA), jasmonic (JA), and glycosylated salicylic (SAG) acids significantly decreased. Correlation analysis of total root length and phytohormones indicated that CZ, ABA, and IAA are positively associated with wheat root length. These results suggest that changes in metabolic pathways and plant hormones caused by moderate soil drying help wheat roots grow into deeper soil layers.

Keywords

References

  1. Annu Rev Plant Biol. 2022 May 20;73:495-521 [PMID: 35231180]
  2. New Phytol. 2013 Jan;197(1):139-150 [PMID: 23106247]
  3. J Exp Bot. 2002 Jan;53(366):33-7 [PMID: 11741038]
  4. Mol Plant. 2022 Feb 7;15(2):276-292 [PMID: 34793983]
  5. J Exp Bot. 2000 Sep;51(350):1555-62 [PMID: 11006306]
  6. PLoS One. 2016 May 25;11(5):e0156362 [PMID: 27223810]
  7. Nature. 2016 Jan 7;529(7584):84-7 [PMID: 26738594]
  8. Plant Cell Environ. 2024 Jan;47(1):38-48 [PMID: 37705239]
  9. Nat Cell Biol. 2009 Jan;11(1):78-84 [PMID: 19079245]
  10. Appl Environ Microbiol. 2022 Sep 27;88(18):e0097122 [PMID: 36073926]
  11. Science. 2015 Aug 21;349(6250):860-4 [PMID: 26184915]
  12. Cell Rep. 2020 Sep 29;32(13):108198 [PMID: 32997985]
  13. Saudi J Biol Sci. 2019 Nov;26(7):1882-1895 [PMID: 31762671]
  14. Front Plant Sci. 2020 Sep 10;11:556972 [PMID: 33013974]
  15. Ann Bot. 2016 Oct 1;118(4):573-592 [PMID: 27411680]
  16. Am J Bot. 2013 Sep;100(9):1692-705 [PMID: 23956051]
  17. Nat Commun. 2023 Sep 19;14(1):5800 [PMID: 37726263]
  18. Plant Physiol. 2019 Aug;180(4):2198-2211 [PMID: 31164395]
  19. ISME J. 2014 Apr;8(4):790-803 [PMID: 24196324]
  20. Plant Physiol. 2013 Jul;162(3):1566-82 [PMID: 23719892]
  21. Dev Biol. 2007 Apr 1;304(1):297-307 [PMID: 17239844]
  22. Front Plant Sci. 2021 Jul 23;12:658787 [PMID: 34421937]
  23. Plant Cell. 2011 Jun;23(6):2169-83 [PMID: 21719693]
  24. PLoS Genet. 2014 Dec 18;10(12):e1004791 [PMID: 25522358]
  25. Nat Biotechnol. 2019 Jul;37(7):744-754 [PMID: 31209375]
  26. Nat Genet. 2013 Sep;45(9):1097-102 [PMID: 23913002]
  27. Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2310134120 [PMID: 37878725]
  28. New Phytol. 2016 Jul;211(1):225-39 [PMID: 26889752]
  29. J Biol Chem. 2007 Mar 30;282(13):10036-10046 [PMID: 17276977]
  30. Plant J. 1998 Dec;16(5):553-60 [PMID: 10036773]
  31. Nature. 2005 Jan 6;433(7021):39-44 [PMID: 15635403]
  32. J Exp Bot. 2020 Dec 31;71(22):7316-7330 [PMID: 32905588]
  33. Sci Total Environ. 2021 Jun 10;772:144825 [PMID: 33581524]
  34. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20623-8 [PMID: 18077346]
  35. ISME J. 2019 Mar;13(3):738-751 [PMID: 30368524]

Grants

  1. 2023M733003/the China Postdoctoral Science Foundation

MeSH Term

Triticum
Plant Roots
Plant Growth Regulators
Gene Expression Regulation, Plant
Soil
Transcriptome
Indoleacetic Acids
Abscisic Acid
Gene Expression Profiling
Desiccation

Chemicals

Plant Growth Regulators
Soil
Indoleacetic Acids
Abscisic Acid
indoleacetic acid

Word Cloud

Created with Highcharts 10.0.0soildryingrootwheatplantmoderaterootsgrowthmetabolicchangesinvolvedconditionsgenesmetabolismhormonesconcentrationsacidABACZIAAsignificantlysalicyliclengthUnderstandingmechanismsregulateimportantchallengebiologyobservedpromotesunderstandwhetherhormonicregulationperformedtranscriptomesequencingwell-wateredupregulatedmainlystarchsucrosebenzoxazinoidbiosynthesisVarioushormone-relateddifferentiallyexpressedQuantificationshowedabscisiccis-zeatinindole-3-aceticincreasedwhereasSAjasmonicJAglycosylatedSAGacidsdecreasedCorrelationanalysistotalphytohormonesindicatedpositivelyassociatedresultssuggestpathwayscausedhelpgrowdeeperlayersTranscriptomicHormonalChangesWheatRootsEnhanceGrowthModerateSoilDryinghormone

Similar Articles

Cited By

No available data.