Eva Fellinger, Tom Brandt, Justin Creutzburg, Tessa Rommerskirchen, Annette Schmidt
Continuous Glucose Monitoring (CGM) not only can be used for glycemic control in chronic diseases (e.g., diabetes), but is increasingly being utilized by individuals and athletes to monitor fluctuations in training and everyday life. However, it is not clear how accurately CGM reflects plasma glucose concentration in a healthy population in the absence of chronic diseases. In an oral glucose tolerance test (OGTT) with forty-four healthy male subjects (25.5 ± 4.5 years), the interstitial fluid glucose (ISFG) concentration obtained by a CGM sensor was compared against finger-prick capillary plasma glucose (CPG) concentration at fasting baseline (T0) and 30 (T30), 60 (T60), 90 (T90), and 120 (T120) min post OGTT to investigate differences in measurement accuracy. The overall mean absolute relative difference (MARD) was 12.9% (95%-CI: 11.8-14.0%). Approximately 100% of the ISFG values were within zones A and B in the Consensus Error Grid, indicating clinical accuracy. A paired t-test revealed statistically significant differences between CPG and ISFG at all time points (T0: 97.3 mg/dL vs. 89.7 mg/dL, T30: 159.9 mg/dL vs. 144.3 mg/dL, T60: 134.8 mg/dL vs. 126.2 mg/dL, T90: 113.7 mg/dL vs. 99.3 mg/dL, and T120: 91.8 mg/dL vs. 82.6 mg/dL; < 0.001) with medium to large effect sizes (d = 0.57-1.02) and with ISFG systematically under-reporting the reference system CPG. CGM sensors provide a convenient and reliable method for monitoring blood glucose in the everyday lives of healthy adults. Nonetheless, their use in clinical settings wherein implications are drawn from CGM readings should be handled carefully.
J Clin Endocrinol Metab. 2019 Oct 1;104(10):4356-4364
[PMID:
31127824]
Diabetes Care. 2000 Mar;23(3):295-301
[PMID:
10868854]
Diabetes Technol Ther. 2017 Jun;19(S3):S25-S37
[PMID:
28585879]
Sensors (Basel). 2022 Mar 05;22(5):
[PMID:
35271177]
Diabetes Technol Ther. 2018 Jun;20(6):395-402
[PMID:
29901421]
Physiol Behav. 2018 Apr 1;187:20-23
[PMID:
28843891]
Int J Sport Nutr Exerc Metab. 2022 Dec 26;33(2):121-132
[PMID:
36572039]
J Diabetes Sci Technol. 2024 Jul;18(4):857-865
[PMID:
36329636]
PLoS One. 2015 Oct 07;10(10):e0139973
[PMID:
26445499]
J Am Coll Nutr. 2021 Jan;40(1):26-32
[PMID:
32213009]
J Diabetes Sci Technol. 2019 May;13(3):575-583
[PMID:
30453761]
Diabetes Care. 2006 Aug;29(8):1805-11
[PMID:
16873784]
Biosensors (Basel). 2018 Oct 17;8(4):
[PMID:
30336581]
Sensors (Basel). 2023 Apr 25;23(9):
[PMID:
37177452]
Diabetologia. 2020 Mar;63(3):453-461
[PMID:
31754750]
Diabetes Technol Ther. 2017 Mar;19(3):164-172
[PMID:
28263665]
Sensors (Basel). 2024 Jan 24;24(3):
[PMID:
38339464]
Cell Metab. 2023 May 2;35(5):758-769.e3
[PMID:
37080199]
Diabetes Technol Ther. 2015 Nov;17(11):787-94
[PMID:
26171659]
J Diabetes Sci Technol. 2017 Nov;11(6):1275-1276
[PMID:
28849677]
Front Physiol. 2021 Oct 15;12:732751
[PMID:
34721064]
Endocr J. 2017 Aug 30;64(8):827-832
[PMID:
28740044]
Diabet Med. 2019 May;36(5):606-611
[PMID:
30677187]
Int J Sport Nutr Exerc Metab. 2020 Jul 29;30(5):374-381
[PMID:
32726749]
J Diabetes Sci Technol. 2013 Jul 01;7(4):842-53
[PMID:
23911165]
J Diabetes Sci Technol. 2022 Jan;16(1):70-77
[PMID:
32954812]
Diabetes Metab Syndr. 2018 Apr - Jun;12(2):181-187
[PMID:
28967612]
Diabetes Care. 2017 Dec;40(12):1631-1640
[PMID:
29162583]
Biosensors (Basel). 2018 May 18;8(2):
[PMID:
29783669]
Sensors (Basel). 2023 Aug 25;23(17):
[PMID:
37687871]