Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery.

Hongquan Wang, Keshav D Singh, Hari P Poudel, Manoj Natarajan, Prabahar Ravichandran, Brandon Eisenreich
Author Information
  1. Hongquan Wang: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada. ORCID
  2. Keshav D Singh: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada. ORCID
  3. Hari P Poudel: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada. ORCID
  4. Manoj Natarajan: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada. ORCID
  5. Prabahar Ravichandran: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada. ORCID
  6. Brandon Eisenreich: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada.

Abstract

Crop height and biomass are the two important phenotyping traits to screen forage population types at local and regional scales. This study aims to compare the performances of multispectral and RGB sensors onboard drones for quantitative retrievals of forage crop height and biomass at very high resolution. We acquired the unmanned aerial vehicle (UAV) multispectral images (MSIs) at 1.67 cm spatial resolution and visible data (RGB) at 0.31 cm resolution and measured the forage height and above-ground biomass over the alfalfa ( L.) breeding trials in the Canadian Prairies. (1) For height estimation, the digital surface model (DSM) and digital terrain model (DTM) were extracted from MSI and RGB data, respectively. As the resolution of the DTM is five times less than that of the DSM, we applied an aggregation algorithm to the DSM to constrain the same spatial resolution between DSM and DTM. The difference between DSM and DTM was computed as the canopy height model (CHM), which was at 8.35 cm and 1.55 cm for MSI and RGB data, respectively. (2) For biomass estimation, the normalized difference vegetation index (NDVI) from MSI data and excess green (ExG) index from RGB data were analyzed and regressed in terms of ground measurements, leading to empirical models. The results indicate better performance of MSI for above-ground biomass (AGB) retrievals at 1.67 cm resolution and better performance of RGB data for canopy height retrievals at 1.55 cm. Although the retrieved height was well correlated with the ground measurements, a significant underestimation was observed. Thus, we developed a bias correction function to match the retrieval with the ground measurements. This study provides insight into the optimal selection of sensor for specific targeted vegetation growth traits in a forage crop.

Keywords

References

  1. Sensors (Basel). 2021 Jun 24;21(13): [PMID: 34202705]
  2. Plant Methods. 2019 Feb 20;15:17 [PMID: 30828356]
  3. J Opt. 2018 Apr;20(4): [PMID: 30847052]
  4. Front Plant Sci. 2022 Jul 22;13:928953 [PMID: 35937316]
  5. Nat Ecol Evol. 2023 Nov;7(11):1778-1789 [PMID: 37770546]

Grants

  1. na/Beef Cattle Research Council
  2. na/Agriculture and Agri-Food Canada

MeSH Term

Biomass
Algorithms
Unmanned Aerial Devices
Medicago sativa
Crops, Agricultural

Word Cloud

Created with Highcharts 10.0.0heightRGBbiomassresolutioncmdataforage1DSMDTMMSImultispectralretrievalsabove-groundmodelcanopygroundmeasurementstraitsstudycropUAV67spatialestimationdigitalrespectivelydifference55vegetationindexbetterperformanceselectionsensorCroptwoimportantphenotypingscreenpopulationtypeslocalregionalscalesaimscompareperformancessensorsonboarddronesquantitativehighacquiredunmannedaerialvehicleimagesMSIsvisible031measuredalfalfaLbreedingtrialsCanadianPrairiessurfaceterrainextractedfivetimeslessappliedaggregationalgorithmconstraincomputedCHM8352normalizedNDVIexcessgreenExGanalyzedregressedtermsleadingempiricalmodelsresultsindicateAGBAlthoughretrievedwellcorrelatedsignificantunderestimationobservedThusdevelopedbiascorrectionfunctionmatchretrievalprovidesinsightoptimalspecifictargetedgrowthForageHeightAbove-GroundBiomassEstimationComparingUAV-BasedMultispectralImagery

Similar Articles

Cited By